A254685 Number of partially ordered partitions of n into parts less than or equal to 3, in which the order of adjacent 2's and 3's is unimportant.
1, 1, 2, 4, 7, 12, 22, 39, 69, 123, 219, 389, 692, 1231, 2189, 3893, 6924, 12314, 21900, 38949, 69270, 123195, 219100, 389665, 693011, 1232506, 2191987, 3898404, 6933232, 12330612, 21929742, 39001599, 69363549, 123361658, 219396194, 390191659, 693947912
Offset: 0
Examples
a(7)=39. These are (331),(313),(133),(322=232=223),(3211=2311),(1123=1132),(1231=1321),(3112),(2113),(1312),(1213),(3121),(2131),(31111),(13111),(11311),(11131),(11113),(2221),(2212),(2122),(1222),(22111),(21211),(12211),(12121),(11221),(11212),(11122),(12112),(21112),(21121),(211111),(121111),(112111),(111211),(111121),(111112),(1111111).
Links
- Index entries for linear recurrences with constant coefficients, signature (1,1,1,0,-1).
Crossrefs
Cf. A001399.
Programs
-
Magma
I:=[1,2,4,7,12]; [n le 5 select I[n] else Self(n-1)+Self(n-2)+Self(n-3)-Self(n-5): n in [1..40]]; // Vincenzo Librandi, May 06 2015
-
Mathematica
CoefficientList[Series[1/(x^5 - x^3 - x^2 - x + 1), {x, 0, 40}], x] (* Vincenzo Librandi, May 06 2015 *)
Formula
G.f.: 1/(x^5 - x^3 - x^2 - x + 1).
a(n) = a(n-1) + a(n-2) + a(n-3) - a(n-5).
Extensions
Corrected g.f. and more terms from Vincenzo Librandi, May 06 2015
a(0) added and g.f. adapted from Alois P. Heinz, May 08 2015
Comments