A254686 Number of ways to put n red and n blue balls into n indistinguishable boxes.
1, 1, 5, 19, 74, 248, 814, 2457, 7168, 19928, 53688, 139820, 354987, 878434, 2128102, 5052010, 11781881, 27019758, 61035671, 135928105, 298784144, 648726349, 1392474574, 2956730910, 6214668074, 12937060340, 26686392239, 54572423946, 110680119454, 222710856175, 444776676764
Offset: 0
Keywords
Examples
For n = 2 the a(2) = 5 ways to put 2 red balls and 2 blue balls into 2 indistinguishable boxes are (RRBB)(), (RRB)(B), (RBB)(R), (RR)(BB), (RB)(RB).
Links
- Brian Chen, Table of n, a(n) for n = 0..64
Programs
-
Maple
with(numtheory): b:= proc(n, k, i) option remember; `if`(n>k, 0, 1) +`if`(isprime(n) or i<2, 0, add( `if`(d>k, 0, b(n/d, d, i-1)), d=divisors(n) minus {1, n})) end: a:= n-> b(6^n$2,n): seq(a(n), n=0..20); # Alois P. Heinz, Mar 26 2015
-
Mathematica
b[n_, k_, i_] := b[n, k, i] = If[n > k, 0, 1] + If[PrimeQ[n] || i < 2, 0, Sum[If[d > k, 0, b[n/d, d, i - 1]], {d, Divisors[n] [[2 ;; -2]]}]]; a[n_] := b[6^n, 6^n, n]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jan 08 2016, after Alois P. Heinz *)
Comments