cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Brian Chen

Brian Chen's wiki page.

Brian Chen has authored 2 sequences.

A254811 Number of ways to put n red, n blue, and n green balls into n indistinguishable boxes.

Original entry on oeis.org

1, 1, 14, 171, 1975, 20096, 187921, 1609727, 12827392, 95701382, 673873648, 4503935052, 28728268655, 175644353402, 1033386471872, 5870110651051, 32289704469531, 172438417419444, 896076816466546, 4540173176769827, 22469530730320361
Offset: 0

Author

Brian Chen, Feb 08 2015

Keywords

Comments

a(n) is the sum of the number of partitions of the multiset {R^n, B^n, G^n} into 1, 2, ..., n parts (as observed in the pink box comments by Joerg Arndt and Tom Edgar). a(0) := 1. For partitions of multisets see the Knuth reference. - Wolfdieter Lang, Mar 26 2015
a(n) is also the number of factorizations of m^n into at most n factors where m is a product of 3 distinct primes. a(2) = 14: (2*3*5)^2 = 900 has 14 factorizations into at most 2 factors: 900, 30*30, 36*25, 45*20, 50*18, 60*15, 75*12, 90*10, 100*9, 150*6, 180*5, 225*4, 300*3, 450*2. - Alois P. Heinz, Mar 26 2015

Examples

			For n = 2 the a(2) = 14 ways to put 2 red balls, 2 blue balls, and 2 green balls into 2 indistinguishable boxes are (RRBBGG)(), (RRBBG)(G), (RRBGG)(B), (RBBGG)(R), (RRBB)(GG), (RRGG)(BB), (BBGG)(RR), (RRBG)(BG), (RBBG)(RG), (RBGG)(RB), (RRB)(BGG), (RBB)(RGG), (RRG)(BBG), (RGB)(RGB).
		

References

  • D. A. Knuth, The Art of Computer Programming. Volume 4, Fascicle 3, Addison-Wesley, 2010, pp. 74 - 77.

Crossrefs

Cf. A254686.
Column k=3 of A256384.

Programs

  • Maple
    with(numtheory):
    b:= proc(n, k, i) option remember;
          `if`(n>k, 0, 1) +`if`(isprime(n) or i<2, 0, add(
          `if`(d>k, 0, b(n/d, d, i-1)), d=divisors(n) minus {1, n}))
        end:
    a:= n-> b(30^n$2,n):
    seq(a(n), n=0..8);  # Alois P. Heinz, Mar 26 2015
  • Mathematica
    b[n_, k_, i_] := b[n, k, i] = If[n>k, 0, 1] + If[PrimeQ[n] || i<2, 0, Sum[ If[d>k, 0, b[n/d, d, i-1]], {d, Divisors[n][[2 ;; -2]]}]]; a[n_] := b[30^n, 30^n, n]; Table[a[n], {n, 0, 8}] (* Jean-François Alcover, Jan 08 2016, after Alois P. Heinz *)

A254686 Number of ways to put n red and n blue balls into n indistinguishable boxes.

Original entry on oeis.org

1, 1, 5, 19, 74, 248, 814, 2457, 7168, 19928, 53688, 139820, 354987, 878434, 2128102, 5052010, 11781881, 27019758, 61035671, 135928105, 298784144, 648726349, 1392474574, 2956730910, 6214668074, 12937060340, 26686392239, 54572423946, 110680119454, 222710856175, 444776676764
Offset: 0

Author

Brian Chen, Feb 08 2015

Keywords

Comments

See a comment on A254811 about multiset partitions and the Knuth reference. - Wolfdieter Lang, Mar 26 2015

Examples

			For n = 2 the a(2) = 5 ways to put 2 red balls and 2 blue balls into 2 indistinguishable boxes are (RRBB)(), (RRB)(B), (RBB)(R), (RR)(BB), (RB)(RB).
		

Crossrefs

Column k=2 of A256384.
Main diagonal of A277239.

Programs

  • Maple
    with(numtheory):
    b:= proc(n, k, i) option remember;
          `if`(n>k, 0, 1) +`if`(isprime(n) or i<2, 0, add(
          `if`(d>k, 0, b(n/d, d, i-1)), d=divisors(n) minus {1, n}))
        end:
    a:= n-> b(6^n$2,n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Mar 26 2015
  • Mathematica
    b[n_, k_, i_] := b[n, k, i] = If[n > k, 0, 1] + If[PrimeQ[n] || i < 2, 0, Sum[If[d > k, 0, b[n/d, d, i - 1]], {d, Divisors[n] [[2 ;; -2]]}]]; a[n_] := b[6^n, 6^n, n]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jan 08 2016, after Alois P. Heinz *)