A254744 a(n) = 2^n * Sum_{k=1 .. n-1} a(k) * a(n-1-k) with a(0) = 1.
1, 2, 16, 288, 10240, 700416, 92864512, 24184487936, 12484798840832, 12835745584644096, 26339606633209921536, 107993030830149951553536, 885112171099428768672907264, 14505223494706550858367937544192, 475365227058478388903633481696804864
Offset: 0
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..80
- J. Blieberger and P. Kirschenhofer, Generalized Catalan Sequences Originating from the Analysis of Special Data Structures, Bulletin of the ICA, 71 (2014) 103-116.
Programs
-
Haskell
a254744 n = a254744_list !! n a254744_list = 1 : f 2 [1] where f x ys = y : f (x * 2) (y : ys) where y = x * (sum $ zipWith (*) ys $ reverse ys) -- Reinhard Zumkeller, Feb 07 2015
-
PARI
{a(n) = if( n<1, n==0, 2^n * sum(k=0, n-1, a(k) * a(n-1-k)))};
Formula
a(n) ~ 2^((n^2 + 3*n)/2) * c where c = 0.7153374336... .
Comments