A254753 Composite numbers with only prime proper prefixes and suffixes in base 10.
22, 25, 27, 32, 33, 35, 52, 55, 57, 72, 75, 77, 237, 297, 537, 597, 713, 717, 737, 2337, 2397, 2937, 3113, 3173, 5937, 5997, 7197, 7337, 7397, 29397, 31373, 37937, 59397, 73313
Offset: 1
Examples
6 is not a member because its expansion cannot be sliced in two. The composite 73313 is a member because (7, 3313, 73, 313, 733, 13, 7331, 3) are all primes.
Programs
-
Mathematica
apQ[n_]:=Module[{idn=IntegerDigits[n],c1,c2},c1=FromDigits/@ Table[ Take[ idn,k],{k,Length[idn]-1}];c2=FromDigits/@Table[Take[idn,k],{k,-(Length[ idn]-1), -1}]; AllTrue[ Join[c1,c2],PrimeQ]]; Select[Range[ 10,80000], CompositeQ[#] && apQ[#]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Nov 29 2018 *)
-
PARI
isComposite(n) = (n>2)&&(!isprime(n)); slicesIntoPrimes(n,b=10) = {my(k=b);if(n0,if(!isprime(n\k)||!isprime(n%k),return(0););k*=b;);1;} isCompositeSlicingIntoPrimes(n,b=10) = isComposite(n) && slicesIntoPrimes(n,b);
Comments