cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A254865 a(n) = Product_{k = 1+n-floor(n/3) .. n} k.

Original entry on oeis.org

1, 1, 3, 4, 5, 30, 42, 56, 504, 720, 990, 11880, 17160, 24024, 360360, 524160, 742560, 13366080, 19535040, 27907200, 586051200, 859541760, 1235591280, 29654190720, 43609104000, 62990928000, 1700755056000, 2506375872000, 3634245014400, 109027350432000, 160945136352000, 234102016512000, 7725366544896000, 11420107066368000
Offset: 1

Views

Author

Antti Karttunen, Feb 09 2015

Keywords

Comments

Informally: Take the upper third of natural numbers in range [1..n] and multiply them together.

Crossrefs

Leftmost column of A254864.
Trisection: A064352.

Programs

  • Maple
    seq(n!/(n-floor(n/3))!,n=1..50); # Robert Israel, Jul 15 2020
  • Mathematica
    Array[#!/(# - Floor[#/3])! &, 34] (* Michael De Vlieger, Jul 15 2020 *)
  • PARI
    a(n) = prod(k=1+n-n\3, n, k); \\ Michel Marcus, Jul 15 2020
  • Scheme
    (define (A254865 n) (mul A000027 (+ 1 (- n (floor->exact (/ n 3)))) n))
    (define (mul intfun lowlim uplim) (let multloop ((i lowlim) (res 1)) (cond ((> i uplim) res) (else (multloop (+ 1 i) (* res (intfun i)))))))
    (define (A254865 n) (A254864bi n 1)) ;; Alternatively, using code given in A254864.
    

Formula

a(n) = Product_{k = 1+n-floor(n/3) .. n} k.
Other identities. For all n >= 1:
a(3n) = A064352(n).
From Robert Israel, Jul 15 2020: (Start) a(n) = n!/(n-floor(n/3))!.
a(3*k) = 3*k*a(3*k-1).
a(3*k+1) = (3*k+1)*a(3*k)/(2*k+1).
a(3*k+2) = (3*k+2)*a(3*k+1)/(2*k+2).
E.g.f.: (cosh(x^(3/2))-1)*(1+1/x) + sinh(x^(3/2))/sqrt(x).
(End)