cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A254967 Triangle of iterated absolute differences of lucky numbers read by antidiagonals upwards.

Original entry on oeis.org

1, 2, 3, 2, 4, 7, 0, 2, 2, 9, 0, 0, 2, 4, 13, 0, 0, 0, 2, 2, 15, 2, 2, 2, 2, 4, 6, 21, 2, 0, 2, 0, 2, 2, 4, 25, 2, 0, 0, 2, 2, 0, 2, 6, 31, 0, 2, 2, 2, 0, 2, 2, 4, 2, 33, 0, 0, 2, 0, 2, 2, 0, 2, 2, 4, 37, 0, 0, 0, 2, 2, 0, 2, 2, 0, 2, 6, 43, 2, 2, 2, 2, 0, 2
Offset: 0

Views

Author

Reinhard Zumkeller, Feb 11 2015

Keywords

Comments

This sequence is related to the lucky numbers (cf. A000959) in the same way as A036262 is related to the prime numbers;

Examples

			.   0:                      1
.   1:                     2 3
.   2:                    2 4 7
.   3:                   0 2 2 9
.   4:                  0 0 2 4 13
.   5:                 0 0 0 2 2 15
.   6:                2 2 2 2 4 6 21
.   7:               2 0 2 0 2 2 4 25
.   8:              2 0 0 2 2 0 2 6 31
.   9:             0 2 2 2 0 2 2 4 2 33
.  10:            0 0 2 0 2 2 0 2 2 4 37
.  11:           0 0 0 2 2 0 2 2 0 2 6 43
.  12:          2 2 2 2 0 2 2 0 2 2 0 6 49
.  13:         0 2 0 2 0 0 2 0 0 2 4 4 2 51 .
		

Crossrefs

Cf. A054978 (left edge), A254969 (central terms), A000959 (right edge), A031883, A036262.

Programs

  • Haskell
    a254967 n k = a254967_tabl !! n !! k
    a254967_row n = a254967_tabl !! n
    a254967_tabl = diags [] $
       iterate (\lds -> map abs $ zipWith (-) (tail lds) lds) a000959_list
       where diags uss (vs:vss) = (map head wss) : diags (map tail wss) vss
                                  where wss = vs : uss
  • Mathematica
    nmax = 13; (* max index for triangle rows *)
    imax = 25; (* max index for initial lucky array L *)
    L = Table[2i + 1, {i, 0, imax}];
    For[n = 2, n < Length[L], r = L[[n++]]; L = ReplacePart[L, Table[r*i -> Nothing, {i, 1, Length[L]/r}]]];
    T[n_, n_] := If[n+1 <= Length[L], L[[n+1]], Print["imax should be increased"]; 0];
    T[n_, k_] := T[n, k] = Abs[T[n, k+1] - T[n-1, k]];
    Table[T[n, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 22 2021 *)

Formula

T(n,0) = A054978(n).
T(2*n,n) = A254969(n).
T(n,n-1) = A031883(n) for n > 0.
T(n,n) = A000959(n+1).
T(n,k) = abs(T(n,k+1) - T(n-1,k)) for 0 <= k < n.