A254967 Triangle of iterated absolute differences of lucky numbers read by antidiagonals upwards.
1, 2, 3, 2, 4, 7, 0, 2, 2, 9, 0, 0, 2, 4, 13, 0, 0, 0, 2, 2, 15, 2, 2, 2, 2, 4, 6, 21, 2, 0, 2, 0, 2, 2, 4, 25, 2, 0, 0, 2, 2, 0, 2, 6, 31, 0, 2, 2, 2, 0, 2, 2, 4, 2, 33, 0, 0, 2, 0, 2, 2, 0, 2, 2, 4, 37, 0, 0, 0, 2, 2, 0, 2, 2, 0, 2, 6, 43, 2, 2, 2, 2, 0, 2
Offset: 0
Examples
. 0: 1 . 1: 2 3 . 2: 2 4 7 . 3: 0 2 2 9 . 4: 0 0 2 4 13 . 5: 0 0 0 2 2 15 . 6: 2 2 2 2 4 6 21 . 7: 2 0 2 0 2 2 4 25 . 8: 2 0 0 2 2 0 2 6 31 . 9: 0 2 2 2 0 2 2 4 2 33 . 10: 0 0 2 0 2 2 0 2 2 4 37 . 11: 0 0 0 2 2 0 2 2 0 2 6 43 . 12: 2 2 2 2 0 2 2 0 2 2 0 6 49 . 13: 0 2 0 2 0 0 2 0 0 2 4 4 2 51 .
Links
- Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened
- Eric Weisstein's World of Mathematics, Lucky number.
- Wikipedia, Lucky number
Programs
-
Haskell
a254967 n k = a254967_tabl !! n !! k a254967_row n = a254967_tabl !! n a254967_tabl = diags [] $ iterate (\lds -> map abs $ zipWith (-) (tail lds) lds) a000959_list where diags uss (vs:vss) = (map head wss) : diags (map tail wss) vss where wss = vs : uss
-
Mathematica
nmax = 13; (* max index for triangle rows *) imax = 25; (* max index for initial lucky array L *) L = Table[2i + 1, {i, 0, imax}]; For[n = 2, n < Length[L], r = L[[n++]]; L = ReplacePart[L, Table[r*i -> Nothing, {i, 1, Length[L]/r}]]]; T[n_, n_] := If[n+1 <= Length[L], L[[n+1]], Print["imax should be increased"]; 0]; T[n_, k_] := T[n, k] = Abs[T[n, k+1] - T[n-1, k]]; Table[T[n, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 22 2021 *)
Comments