cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A254981 a(n) is the sum of the divisors d of n such that n/d is cubefree.

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 14, 13, 18, 12, 28, 14, 24, 24, 28, 18, 39, 20, 42, 32, 36, 24, 56, 31, 42, 39, 56, 30, 72, 32, 56, 48, 54, 48, 91, 38, 60, 56, 84, 42, 96, 44, 84, 78, 72, 48, 112, 57, 93, 72, 98, 54, 117, 72, 112, 80, 90, 60, 168, 62, 96, 104, 112, 84, 144
Offset: 1

Views

Author

Álvar Ibeas, Feb 11 2015

Keywords

Comments

Inverse Möbius transform of A254926.

Crossrefs

Programs

  • Mathematica
    nn = 66; f[list_, i_] := list[[i]]; a = Table[If[Max[FactorInteger[n][[All, 2]]] < 3, 1, 0], {n, 1, nn}]; b =Table[n, {n, 1, nn}]; Table[
    DirichletConvolve[f[a, n], f[b, n], n, m], {m, 1, nn}] (* Geoffrey Critzer, Feb 22 2015 *)
    f[p_, e_] := p^(e-2) * (1 + p + p^2); f[p_, 1] := 1 + p; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 27 2023 *)
  • PARI
    a212793(n) = {my(f = factor(n)); for (i=1, #f~, if ((f[i, 2]) >=3, return(0)); ); return (1); }
    a(n) = sumdiv(n, d, d*a212793(n/d)); \\ Michel Marcus, Feb 11 2015
    
  • PARI
    a(n) = sumdiv(n, d, if (ispower(d, 3), moebius(sqrtnint(d, 3))*sigma(n/d), 0)); \\ Michel Marcus, Mar 04 2015

Formula

a(n) = Sum_{d | n} d * A212793(n/d) = n * Sum_{d | n} A212793(d) / d.
a(n) = Sum_{d^3 | n} mu(d) * A000203(n/d^3).
Multiplicative with a(p) = 1 + p; a(p^e) = p^(e-2) * (1 + p + p^2), for e>1.
Dirichlet g.f.: zeta(s) * zeta(s-1) / zeta(3s).
If n is powerful, a(n^k) = n^(k-1) * a(n).
For k>1, a(n^k) = n^(k-1) * a(n) * Product_{p prime, ord(n,p)=1} (p^3-1) / (p^3-p).
Sum_{k=1..n} a(k) ~ 315*n^2 / (4*Pi^4). - Vaclav Kotesovec, Feb 03 2019