A255001 Number of partitions of 4n into distinct parts with equal sums of odd and even parts.
1, 0, 1, 2, 4, 6, 12, 15, 30, 40, 70, 96, 165, 216, 352, 486, 736, 988, 1518, 1998, 2944, 3952, 5607, 7488, 10614, 13916, 19305, 25536, 34854, 45568, 61864, 80240, 107640, 139776, 184832, 238680, 314628, 402800, 526176, 673652, 872592, 1110060, 1431704
Offset: 0
Keywords
Examples
a(0) = 1: [], the empty partition. a(1) = 0. a(2) = 1: [4,3,1]. a(3) = 2: [6,5,1], [5,4,2,1]. a(4) = 4: [8,7,1], [8,5,3], [7,6,2,1], [6,5,3,2].
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
g:= proc(n, i) option remember; `if`(i*(i+1)/2
n, 0, g(n-i, i-1)))) end: b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-2)+`if`(i>n, 0, b(n-i, i-2)))) end: a:= n-> g(n$2)*b(2*n, 2*n-1): seq(a(n), n=0..50); -
Mathematica
g[n_, i_] := g[n, i] = If[i(i+1)/2 < n, 0, If[n == 0, 1, g[n, i - 1] + If[i > n, 0, g[n - i, i - 1]]]]; b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, b[n, i - 2] + If[i > n, 0, b[n - i, i - 2]]]]; a[n_] := g[n, n] b[2n, 2n-1]; a /@ Range[0, 50] (* Jean-François Alcover, Dec 11 2020, after Alois P. Heinz *)
Formula
a(n) ~ exp(2*Pi*sqrt(n/3)) / (16*sqrt(6)*n^(3/2)). - Vaclav Kotesovec, Dec 11 2020