cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255015 Number of toroidal n X n binary arrays, allowing rotation of rows and/or columns as well as matrix transposition.

Original entry on oeis.org

1, 2, 6, 44, 2209, 674384, 954623404, 5744406453840, 144115192471496836, 14925010120653819583840, 6338253001142965335834871200, 10985355337065423791175013899922368, 77433143050453552587418968170813573149024
Offset: 0

Views

Author

Stewart N. Ethier, Feb 12 2015

Keywords

Crossrefs

Cf. A184271 (number of m X n binary arrays allowing rotation of rows/columns), A179043 (main diagonal of A184271), A222188 (number of m X n binary arrays allowing rotation/reflection of rows/columns), A209251 (main diagonal of A222188), A255016 (number of n X n binary arrays allowing rotation/reflection of rows/columns as well as matrix transposition).

Programs

  • Mathematica
    a[n_] := (2 n^2)^(-1) Sum[If[Mod[n, c] == 0, Sum[If[Mod[n, d] == 0, EulerPhi[c] EulerPhi[d] 2^(n^2/ LCM[c, d]), 0], {d, 1, n}], 0], {c, 1, n}] + (2 n)^(-1) Sum[If[Mod[n, d] == 0, EulerPhi[d] 2^(n (n + d - 2 IntegerPart[d/2])/(2 d)), 0], {d, 1, n}];

Formula

a(n) = (2*n^2)^{-1} Sum_{ c divides n } Sum_{ d divides n } phi(c)*phi(d)* 2^(n^2/lcm(c,d)) + (2*n)^{-1} Sum_{ d divides n } phi(d)*2^(n*(n + d - 2 *floor(d/2))/(2*d)), where phi is A000010.

Extensions

a(0)=1 from Alois P. Heinz, Feb 19 2015