A255051 a(1)=1, a(n+1) = a(n)/gcd(a(n),n) if this GCD is > 1, else a(n+1) = a(n) + n + 1.
1, 3, 6, 2, 1, 7, 14, 2, 1, 11, 22, 2, 1, 15, 30, 2, 1, 19, 38, 2, 1, 23, 46, 2, 1, 27, 54, 2, 1, 31, 62, 2, 1, 35, 70, 2, 1, 39, 78, 2, 1, 43, 86, 2, 1, 47, 94, 2, 1, 51, 102, 2, 1, 55, 110, 2, 1, 59, 118, 2, 1, 63, 126, 2, 1, 67, 134, 2, 1, 71, 142, 2, 1
Offset: 1
Examples
a(2) = a(1)+2 = 3, a(3) = a(2)+3 = 6, a(4) = a(3)/3 = 2, a(5) = a(4)/2 = 1; a(6) = a(5)+6 = 7, a(7) = a(6)+7 = 14, a(8) = a(7)/7 = 2, a(9) = a(8)/2 = 1; ...
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,2,0,0,0,-1).
Programs
-
Magma
&cat [[1, 4*n+3, 8*n+6, 2]: n in [0..20]]; // Bruno Berselli, Feb 16 2015
-
Mathematica
Table[(2 (3 + (-1)^n) - (2 - 3 n + n (-1)^n) (1 - (-1)^((n - 1) n/2)))/4, {n, 1, 80}] (* Bruno Berselli, Feb 16 2015 *) nxt[{n_,a_}]:={n+1,If[GCD[a,n]>1,a/GCD[a,n],a+n+1]}; Transpose[ NestList[ nxt, {1,1},80]][[2]] (* or *) LinearRecurrence[{0,0,0,2,0,0,0,-1},{1,3,6,2,1,7,14,2},80] (* Harvey P. Dale, Oct 13 2015 *)
-
PARI
(A255051_upto(N)=vector(N, n, if(gcd(N, n-1)>1, N\=gcd(N, n-1), N+=n)))(99) \\ simplified by M. F. Hasler, Jan 11 2020
-
PARI
A255051(n)=if(n%4>1,if(bittest(n,0),n*2,n+1),2-bittest(n,0)) \\ M. F. Hasler, Feb 18 2015
Formula
a(4k+1) = 1, a(4k+2) = 4k+3, a(4k+3) = 2*a(4k+2) = 8k+6, a(4k) = 2.
G.f.: x*(1 + 3*x + 6*x^2 + 2*x^3 - x^4 + x^5 + 2*x^6 - 2*x^7)/((1 - x)^2*(1 + x)^2*(1 + x^2)^2). - Bruno Berselli, Feb 16 2015
a(n) = ( 2*(3 + (-1)^n) - (2 - 3*n + n*(-1)^n)*(1 - (-1)^((n-1)*n/2)) )/4. - Bruno Berselli, Feb 16 2015
Comments