cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A255056 Trunk of number-of-runs beanstalk: The unique infinite sequence such that a(n-1) = a(n) - number of runs in binary representation of a(n).

Original entry on oeis.org

0, 2, 4, 6, 10, 12, 14, 18, 22, 26, 28, 30, 32, 36, 42, 46, 50, 54, 58, 60, 62, 64, 68, 74, 78, 84, 90, 94, 96, 100, 106, 110, 114, 118, 122, 124, 126, 128, 132, 138, 142, 148, 152, 156, 162, 168, 174, 180, 186, 190, 192, 196, 202, 206, 212, 218, 222, 224, 228, 234, 238, 242, 246, 250, 252, 254
Offset: 0

Views

Author

Antti Karttunen, Feb 14 2015

Keywords

Comments

All numbers of the form (2^n)-2 are present, which guarantees the uniqueness and also provides a well-defined method to compute the sequence, for example, via a partially reversed version A255066.
The sequence was inspired by a similar "binary weight beanstalk", A179016, sharing some general properties with it (like its partly self-copying behavior, see A255071), but also differing in some aspects. For example, here the branching degree is not the constant 2, but can vary from 1 to 4. (Cf. A255058.)

Crossrefs

First differences: A255336.
Terms halved: A255057.
Cf. A255053 & A255055 (the lower & upper bound for a(n)) and also A255123, A255124 (distances to those limits).
Cf. A255327, A255058 (branching degree for node n), A255330 (number of nodes in the finite subtrees branching from the node n), A255331, A255332
Subsequence: A000918 (except for -1).
Similar "beanstalk's trunk" sequences using some other subtracting map than A236840: A179016, A219648, A219666.

Programs

Formula

a(n) = A255066(A255122(n)).
Other identities and observations. For all n >= 0:
a(n) = 2*A255057(n).
A255072(a(n)) = n.
A255053(n) <= a(n) <= A255055(n).

A236840 n minus number of runs in the binary expansion of n: a(n) = n - A005811(n).

Original entry on oeis.org

0, 0, 0, 2, 2, 2, 4, 6, 6, 6, 6, 8, 10, 10, 12, 14, 14, 14, 14, 16, 16, 16, 18, 20, 22, 22, 22, 24, 26, 26, 28, 30, 30, 30, 30, 32, 32, 32, 34, 36, 36, 36, 36, 38, 40, 40, 42, 44, 46, 46, 46, 48, 48, 48, 50, 52, 54, 54, 54, 56, 58, 58, 60, 62, 62, 62, 62, 64, 64, 64
Offset: 0

Views

Author

Antti Karttunen, Apr 18 2014

Keywords

Comments

All terms are even. Used by the "number-of-runs beanstalk" sequence A255056 and many of its associated sequences.

Crossrefs

Cf. A091067 (the positions of records), A106836 (run lengths).
Cf. A255070 (terms divided by 2).

Programs

  • Maple
    A236840 := proc(n) local i, b; if n=0 then 0 else b := convert(n, base, 2); select(i -> (b[i-1]<>b[i]), [$2..nops(b)]); n-1-nops(%) fi end: seq(A236840(i), i=0..69); # Peter Luschny, Apr 19 2014
  • Mathematica
    a[n_] := n - Length@ Split[IntegerDigits[n, 2]]; a[0] = 0; Array[a, 100, 0] (* Amiram Eldar, Jul 16 2023 *)
  • Scheme
    (define (A236840 n)  (- n (A005811 n)))

Formula

a(n) = n - A005811(n) = n - A000120(A003188(n)).
a(n) = 2*A255070(n).

A255057 The trunk of number-of-runs beanstalk, halved: a(n) = A255056(n)/2.

Original entry on oeis.org

0, 1, 2, 3, 5, 6, 7, 9, 11, 13, 14, 15, 16, 18, 21, 23, 25, 27, 29, 30, 31, 32, 34, 37, 39, 42, 45, 47, 48, 50, 53, 55, 57, 59, 61, 62, 63, 64, 66, 69, 71, 74, 76, 78, 81, 84, 87, 90, 93, 95, 96, 98, 101, 103, 106, 109, 111, 112, 114, 117, 119, 121, 123, 125, 126, 127
Offset: 0

Views

Author

Antti Karttunen, Feb 14 2015

Keywords

Crossrefs

First differences: A255337.
Characteristic function: A255339.

Formula

a(n) = A255056(n)/2.
a(n) = A255067(A255122(n)).

A255330 a(n) = total number of nodes in the finite subtrees branching from the node n in the infinite trunk of "number-of-runs beanstalk" (A255056).

Original entry on oeis.org

1, 2, 0, 4, 1, 0, 7, 0, 3, 1, 0, 5, 2, 6, 0, 6, 0, 3, 1, 0, 5, 2, 12, 0, 2, 5, 0, 4, 2, 6, 0, 6, 0, 3, 1, 0, 5, 2, 12, 0, 2, 7, 1, 12, 4, 0, 2, 5, 0, 4, 2, 12, 0, 2, 5, 0, 4, 2, 6, 0, 6, 0, 3, 1, 0, 5, 2, 12, 0, 2, 7, 1, 12, 4, 0, 2, 7, 1, 10, 17, 0, 0, 1, 11, 4, 0, 2, 5, 0, 4, 2, 12, 0, 2, 7, 1, 12, 4, 0, 2, 5, 0, 4, 2, 12, 0, 2, 5, 0, 4, 2, 6, 0, 6, 0, 3, 1, 0, 5
Offset: 0

Views

Author

Antti Karttunen, Feb 21 2015

Keywords

Comments

A255058 gives the number of branches (children) of the node n in the trunk, of which one is the next node of the infinite trunk itself. Thus, if A255058(n) = 1, then a(n) = 0.

Examples

			The edge-relation between nodes is given by A236840(child) = parent. Odd numbers are leaves, as there are no such k that A236840(k) were odd.
The node 11 in the infinite trunk is A255056(11) = 30. Apart from 32 [we have A236840(32) = 30] which is the next node (node 12) in the infinite trunk, it has a single leaf-child 31 [A236840(31) = 30] at the "left side" (less than 32), and a leaf-child 33 [A236840(33) = 30] (more than 32) at the "right side", and also at that side, a subtree of three nodes 34 <- 38 <- 43 [we have A236840(43) = 38, A236840(38) = 34 and A236840(34) = 30], thus in total there are 1+1+3 = 5 nodes in finite branches emanating from the node 11 of the infinite trunk, and a(11) = 5.
		

Crossrefs

Programs

Formula

a(0) = 1; a(n) = sum_{k = A091067(A255057(n)) .. A255068(A255057(n))} A255327(k).
a(n) = A255328(n) + A255329(n).

A255331 a(n) = A255329(n) - A255328(n).

Original entry on oeis.org

-1, 0, 0, -4, 1, 0, -7, 0, -3, 1, 0, 3, 0, -6, 0, -6, 0, -3, 1, 0, 3, 0, -12, 0, 0, -5, 0, 4, 0, -6, 0, -6, 0, -3, 1, 0, 3, 0, -12, 0, 0, 7, 1, -12, 2, 0, 0, -5, 0, 4, 0, -12, 0, 0, -5, 0, 4, 0, -6, 0, -6, 0, -3, 1, 0, 3, 0, -12, 0, 0, 7, 1, -12, 2, 0, 0, 7, 1, -10, 15, 0, 0, 1, -11, 2, 0, 0, -5, 0, 4, 0, -12, 0, 0, 7, 1, -12, 2, 0, 0
Offset: 0

Views

Author

Antti Karttunen, Feb 21 2015

Keywords

Comments

a(n) = How many more nodes there are in the finite subtrees branching "right" (to the "larger side") than in the finite subtrees branching "left" (to the "smaller side") from the node n in the infinite trunk of number-of-runs beanstalk (A255056).
The edge-relation between nodes is given by A236840(child) = parent. Odd numbers are leaves, as there are no such k that A236840(k) were odd.
If A255058(n) = 1, then a(n) = 0, but also in some other cases.

Examples

			The only finite subtree starting from the node number 0 (which is 0) is the leaf 1, and it branches to the "left" (meaning that it is less than 2, which is the next node in the infinite trunk), thus the difference between the nodes in finite branches to the right vs. the nodes in finite branches to the left is -1 and a(0) = -1.
The only finite subtrees starting from the node number 1 in the infinite trunk (which is 2), are the leaves 3 and 5, of which the other one is on the "left" side and the other one on the "right" side (i.e. less than 4 and more than 4, which is the next node in the infinite trunk), thus a(1) = 1-1 = 0.
The node 11 in the infinite trunk is A255056(11) = 30. Apart from 32, which is the next node (node 12) in the infinite trunk, it has one leaf-child 31 at the "left side" (less than 32), and one leaf-child 33 (more than 32) at the "right side", and also at that side a subtree of three nodes 34 <- 38 <- 43, thus a(11) = (3+1) - 1 = 3.
		

Crossrefs

Partial sums: A255332.

Programs

Formula

a(n) = A255329(n) - A255328(n).

A106836 First differences of A060833 and (from a(2) onward) also of A091067 and A255068.

Original entry on oeis.org

3, 3, 1, 4, 1, 2, 1, 4, 3, 1, 1, 3, 1, 2, 1, 4, 3, 1, 4, 1, 2, 1, 1, 3, 3, 1, 1, 3, 1, 2, 1, 4, 3, 1, 4, 1, 2, 1, 4, 3, 1, 1, 3, 1, 2, 1, 1, 3, 3, 1, 4, 1, 2, 1, 1, 3, 3, 1, 1, 3, 1, 2, 1, 4, 3, 1, 4, 1, 2, 1, 4, 3, 1, 1, 3, 1, 2, 1, 4, 3, 1, 4, 1, 2, 1, 1, 3, 3, 1, 1, 3, 1, 2, 1, 1, 3, 3, 1, 4, 1, 2, 1
Offset: 1

Views

Author

Ralf Stephan, May 03 2005

Keywords

Comments

From Antti Karttunen, Feb 20 2015: (Start)
Among the terms a(1) .. a(8192), 1 occurs 4095 times, 2 occurs 1024 times, 3 occurs 2048 times and 4 occurs 1025 times. No larger numbers can ever occur.
That these are the first differences of not just A091067 and A255068, but also of A060833 follows from N. Sato's Feb 12 2013 comment in the latter that "For n > 1, n is in the sequence (A060833) if and only if A038189(n-1) = 1."
Also length of runs in A236840 and A255070.
(End)

Crossrefs

Programs

Formula

a(1) = 3, and for n > 1: a(n) = A091067(n) - A091067(n-1). - Antti Karttunen, Feb 20 2015

Extensions

Name edited by Antti Karttunen, Feb 20 2015
Showing 1-6 of 6 results.