A255092 Least prime p such that p+n is product of (n+1) primes (with multiplicity).
2, 3, 43, 13, 239, 59, 171869, 569, 32797, 2551, 649529, 6133, 1708984363, 57331, 103630981, 65521, 301327031, 262127, 82244873046857, 11943917, 38354628391, 26214379, 679922958173, 37748713, 584125518798828101, 553648103, 7625597484961, 2281701349, 882592301503097, 8153726947
Offset: 0
Examples
2+0=2(prime), 3+1=4=2*2, 43+2=45=3*3*5, 13+3=16=2^4, 239+4=243=3^5,59+5=64=2^6,171869+6=171875=5^6*11,569+7=574=2^6*3^2, 32797+8=32805=3^5*5, 2551+9=2590=2^9*5, 649529+10=649539=3^10*11, 6133+11=6143=2^11*3.
Links
- Robert Israel, Table of n, a(n) for n = 0..1000
Programs
-
Maple
f:= proc(n) uses priqueue; local pq, t, v, p,w,i; initialize(pq); p:= 2; while n mod p = 0 do p:= nextprime(p) od; insert([-p^(n+1),[p$(n+1)]],pq); do t:= extract(pq); v:= -t[1]; w:= t[2]; if isprime(v-n) then return v-n fi; p:= nextprime(w[-1]); while n mod p = 0 do p:= nextprime(p) od: for i from n+1 to 1 by -1 while w[i] = w[n+1] do insert([t[1]*(p/w[n+1])^(n+2-i),[op(w[1..i-1]),p$(n+2-i)]],pq); od od end proc: f(0):= 2: map(f, [$0..40]); # Robert Israel, Sep 25 2024
Extensions
More terms from Robert Israel, Sep 25 2024
Comments