cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255092 Least prime p such that p+n is product of (n+1) primes (with multiplicity).

Original entry on oeis.org

2, 3, 43, 13, 239, 59, 171869, 569, 32797, 2551, 649529, 6133, 1708984363, 57331, 103630981, 65521, 301327031, 262127, 82244873046857, 11943917, 38354628391, 26214379, 679922958173, 37748713, 584125518798828101, 553648103, 7625597484961, 2281701349, 882592301503097, 8153726947
Offset: 0

Views

Author

Zak Seidov, Feb 14 2015

Keywords

Comments

For n>0, terms with odd indices 3, 13, 59, 569... are much smaller than neighbor terms with even indices.
For n > 0, a(n) >= A053669(n)^(n+1) - n. - Robert Israel, Sep 25 2024

Examples

			2+0=2(prime), 3+1=4=2*2, 43+2=45=3*3*5, 13+3=16=2^4, 239+4=243=3^5,59+5=64=2^6,171869+6=171875=5^6*11,569+7=574=2^6*3^2,
32797+8=32805=3^5*5, 2551+9=2590=2^9*5, 649529+10=649539=3^10*11, 6133+11=6143=2^11*3.
		

Crossrefs

Programs

  • Maple
    f:= proc(n)
        uses priqueue;
          local pq, t, v, p,w,i;
          initialize(pq);
          p:= 2;
          while n mod p = 0 do p:= nextprime(p) od;
          insert([-p^(n+1),[p$(n+1)]],pq);
          do
            t:= extract(pq);
            v:= -t[1]; w:= t[2];
            if isprime(v-n) then return v-n fi;
            p:= nextprime(w[-1]);
          while n mod p = 0 do p:= nextprime(p) od:
           for i from n+1 to 1 by -1 while w[i] = w[n+1] do
            insert([t[1]*(p/w[n+1])^(n+2-i),[op(w[1..i-1]),p$(n+2-i)]],pq);
         od od
    end proc:
    f(0):= 2:
    map(f, [$0..40]); # Robert Israel, Sep 25 2024

Extensions

More terms from Robert Israel, Sep 25 2024