cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255177 Second differences of seventh powers (A001015).

Original entry on oeis.org

1, 126, 1932, 12138, 47544, 140070, 341796, 730002, 1412208, 2531214, 4270140, 6857466, 10572072, 15748278, 22780884, 32130210, 44327136, 59978142, 79770348, 104476554, 134960280, 172180806, 217198212, 271178418
Offset: 0

Views

Author

Luciano Ancora, Feb 21 2015

Keywords

Examples

			Second differences:  1, 126, 1932, 12138,  47544, ... (this sequence)
First differences:   1, 127, 2060, 14324,  63801, ... (A152726)
----------------------------------------------------------------------
The seventh powers:  1, 128, 2187, 16384,  78125, ... (A001015)
----------------------------------------------------------------------
First partial sums:  1, 129, 2316, 18700,  96825, ... (A000541)
Second partial sums: 1, 130, 2446, 21146, 117971, ... (A250212)
Third partial sums:  1, 131, 2577, 23723, 141694, ... (A254641)
Fourth partial sums: 1, 132, 2709, 26432, 168126, ... (A254646)
Fifth partial sums:  1, 133, 2842, 29274, 197400, ... (A254684)
		

Crossrefs

Programs

  • Magma
    [1] cat [14*(-1+n)*(9-22*n+23*n^2-12*n^3+3*n^4): n in [2..30]]; // Vincenzo Librandi, Mar 12 2015
    
  • Mathematica
    Join[{1}, Table[14 n (3 n^4 + 5 n^2 + 1), {n, 1, 30}], {n, 0, 24}] (* or *)
    CoefficientList[Series[(1 + 120 x + 1191 x^2 + 2416 x^3 + 1191 x^4 + 120 x^5 + x^6)/(1 - x)^6, {x, 0, 22}], x]
  • Python
    def A255177(n): return 14*n*(n**2*(3*n**2 + 5) + 1) if n else 1 # Chai Wah Wu, Oct 07 2024

Formula

G.f.: (1 + 120*x + 1191*x^2 + 2416*x^3 + 1191*x^4 + 120*x^5 + x^6)/(1 - x)^6.
a(n) = 14*n*(3*n^4 + 5*n^2 + 1) for n>0, a(0)=1.
a(n) = A022523(n)-A022523(n-1). - R. J. Mathar, Jul 16 2015

Extensions

Edited by Bruno Berselli, Mar 19 2015