A255180 Number of partitions of n in which two summands (of each size) are designated.
1, 0, 1, 3, 7, 10, 20, 24, 45, 61, 103, 140, 246, 325, 517, 728, 1086, 1472, 2184, 2918, 4197, 5638, 7875, 10497, 14625, 19272, 26354, 34804, 46992, 61490, 82471, 107163, 142128, 184141, 241701, 311282, 406164, 519755, 672726, 858110, 1102872
Offset: 0
Keywords
Examples
a(4)=7. In order to designate two summands of each size, the multiplicity of each summand must be at least two. For n=4 we consider only the partitions 2+2 and 1+1+1+1. In the first case there is 1 way and in the second case there are 6 ways. 1 + 6 = 7.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+add(b(n-i*j, i-1)*binomial(j, 2), j=2..n/i))) end: a:= n-> b(n$2): seq(a(n), n=0..50); # Alois P. Heinz, Mar 19 2015
-
Mathematica
nn = 40; CoefficientList[Series[Product[1 + x^(2 n)/(1 - x^n)^3, {n, 1, nn}], {x, 0, nn}], x]
Formula
G.f.: Product_{n>=1} 1 + x^(2*n)/(1 - x^n)^3.