cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255185 26-gonal numbers: a(n) = n*(12*n-11).

Original entry on oeis.org

0, 1, 26, 75, 148, 245, 366, 511, 680, 873, 1090, 1331, 1596, 1885, 2198, 2535, 2896, 3281, 3690, 4123, 4580, 5061, 5566, 6095, 6648, 7225, 7826, 8451, 9100, 9773, 10470, 11191, 11936, 12705, 13498, 14315, 15156, 16021, 16910, 17823, 18760
Offset: 0

Views

Author

Luciano Ancora, Apr 04 2015

Keywords

Comments

See comments in A255184.
Also star 13-gonal number: a(n) = A051865(n) + 13*A000217(n-1).

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6 (24th row of the table).

Crossrefs

Cf. similar sequences listed in A255184.

Programs

  • Magma
    [n*(12*n-11): n in [0..50]]; // G. C. Greubel, Jul 12 2024
    
  • Mathematica
    Table[n (12 n - 11), {n, 50}]
    PolygonalNumber[26,Range[0,50]] (* Requires Mathematica version 10 or later *) (* or *) LinearRecurrence[{3,-3,1},{0,1,26},50] (* Harvey P. Dale, Feb 02 2017 *)
  • PARI
    a(n)=n*(12*n-11) \\ Charles R Greathouse IV, Jun 17 2017
    
  • SageMath
    [n*(12*n-11) for n in range(51)] # G. C. Greubel, Jul 12 2024

Formula

G.f.: x*(1 + 23*x)/(1 - x)^3.
a(n) = A000217(n) + 23*A000217(n-1).
Product_{n>=2} (1 - 1/a(n)) = 12/13. - Amiram Eldar, Jan 22 2021
E.g.f.: exp(x)*(x + 12*x^2). - Nikolaos Pantelidis, Feb 05 2023