cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255192 Triangle of number of connected subgraphs of K(n,n) with m edges.

Original entry on oeis.org

1, 4, 1, 81, 78, 36, 9, 1, 4096, 8424, 9552, 7464, 4272, 1812, 560, 120, 16, 1, 390625, 1359640, 2696200, 3880300, 4394600, 4059000, 3111140, 1994150, 1070150, 478800, 176900, 53120, 12650, 2300, 300, 25, 1, 60466176, 314452800, 939988800, 2075760000
Offset: 1

Views

Author

Thomas Dybdahl Ahle, Feb 16 2015

Keywords

Comments

m ranges from 2n-1 to n^2.
First column is A068087.

Examples

			Triangle begins:
----|------------------------------------------------------------
n\m |  1 2 3 4  5  6    7    8    9   10   11   12  13  14 15 16
----|------------------------------------------------------------
1   |  1
2   |  - - 4 1
3   |  - - - - 81 78   36    9    1
4   |  - - - -  -  - 4096 8424 9552 7464 4272 1812 560 120 16  1
		

Crossrefs

Cf. A005333 (row sums?).

Programs

  • Python
    from math import comb as binomial
    def f(x, a, b, k):
        if b == k == 0:
            return 1
        if b == 0 or k == 0:
            return 0
        if x == a:
            return sum(binomial(a, n) * f(x, x, b - 1, k - n) for n in range(1, a + 1))
        return sum(binomial(b, n) * f(x, x, n, k2) * f(n, b, a - x, k - k2)
            for n in range(1, b + 1) for k2 in range(0, k + 1) )
    def a(n, m):
        return f(1, n, n, m)
    for n in range(1, 5):
        print([a(n, m) for m in range(1, n * n + 1)])

Formula

Sum(k>=0, T(n,k)*(-1)^k ) = A136126(2*n-1,n-1) = A092552(n+1), alternating row sums.