A255212 Number A(n,k) of partitions of n^2 into at most k square parts; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 2, 2, 1, 1, 0, 1, 1, 2, 2, 1, 2, 1, 0, 1, 1, 2, 2, 2, 2, 1, 1, 0, 1, 1, 2, 3, 3, 3, 2, 1, 1, 0, 1, 1, 2, 3, 3, 4, 4, 2, 1, 1, 0, 1, 1, 2, 3, 4, 5, 5, 4, 1, 1, 1, 0, 1, 1, 2, 4, 5, 7, 9, 6, 2, 4, 2, 1, 0
Offset: 0
Examples
Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, ... 0, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, ... 0, 1, 1, 1, 2, 3, 3, 4, 5, 5, 6, ... 0, 1, 2, 2, 3, 4, 5, 7, 8, 9, 11, ... 0, 1, 1, 2, 4, 5, 9, 10, 11, 15, 17, ... 0, 1, 1, 2, 4, 6, 9, 13, 18, 21, 27, ... 0, 1, 1, 1, 2, 7, 9, 16, 25, 30, 41, ... 0, 1, 1, 4, 6, 8, 18, 27, 36, 52, 68, ... 0, 1, 2, 2, 7, 13, 23, 36, 51, 70, 94, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..140, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(n=0 or i=1 and n<=t, 1, (j-> `if`(t*j
n, 0, b(n-j, i, t-1))))(i^2)) end: A:= (n, k)-> b(n^2, n, k): seq(seq(A(n, d-n), n=0..d), d=0..15); -
Mathematica
b[n_, i_, t_] := b[n, i, t] = If[n == 0 || i == 1 && n <= t, 1, Function[j, If[t*j
n, 0, b[n-j, i, t-1]]]][i^2]]; A[n_, k_] := b[n^2, n, k]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 15}] // Flatten (* Jean-François Alcover, Feb 22 2016, after Alois P. Heinz *)