cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A349734 Numbers k such that A255217(k) divides A007504(k).

Original entry on oeis.org

2, 5, 15, 17, 20, 25, 26, 33, 37, 45, 49, 51, 71, 87, 88, 91, 105, 111, 121, 127, 173, 175, 199, 203, 213, 221, 262, 271, 287, 305, 307, 319, 324, 329, 368, 377, 410, 411, 415, 439, 445, 455, 463, 467, 468, 473, 547, 558, 561, 567, 585, 589, 591, 614, 651, 661, 663, 665, 670, 673, 743, 761, 765
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Nov 28 2021

Keywords

Examples

			a(2) = 5 is a term because A255217(5) = 2*3*5*7*11 mod (2+3+5+7+11) = 14 divides 2+3+5+7+11 = 28.
		

Crossrefs

Programs

  • Maple
    P:= 1: S:= 0: p:= 1:
    count:= 0: R:= NULL:
    for n from 1 while count < 100 do
      p:= nextprime(p);
      P:= P*p; S:= S+p;
      r:= P mod S;
      if r = 0 then next fi;
      v:= S mod r;
      if v = 0 then
        count:= count+1; R:= R,n;
      fi
    od:
    R;
  • Mathematica
    Select[Range[1000], (m = Mod[Times @@ (p = Prime[Range[#]]), Plus @@ p]) > 0 && Divisible[Plus @@ p, m] &] (* Amiram Eldar, Nov 28 2021 *)

A349738 Numbers k such that A255217(k) divides A002110(k).

Original entry on oeis.org

2, 4, 5, 9, 15, 17, 20, 24, 25, 26, 27, 29, 31, 32, 33, 34, 37, 44, 45, 46, 49, 51, 52, 61, 62, 63, 64, 71, 74, 79, 80, 81, 82, 85, 87, 88, 91, 95, 103, 104, 105, 110, 111, 112, 115, 117, 118, 119, 120, 121, 127, 131, 135, 137, 142, 148, 150, 152, 154, 158, 159, 163, 165, 173, 175, 177, 179, 181
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Nov 28 2021

Keywords

Examples

			a(3) = 5 is a term because A255217(5) = 2*3*5*7*11 mod (2+3+5+7+11) = 14 divides 2*3*5*7*11.
		

Crossrefs

Cf. A002110, A007504, A255217. Contains A349734.

Programs

  • Maple
    P:= 1: S:= 0: p:= 1:
    count:= 0: R:= NULL:
    for n from 1 while count < 100 do
      p:= nextprime(p);
      P:= P*p; S:= S+p;
      r:= P mod S;
      if r = 0 then next fi;
      v:= P mod r;
      if v = 0 then
        count:= count+1; R:= R,n;
      fi
    od:
    R;
  • Mathematica
    Select[Range[200], (m = Mod[Times @@ (p = Prime[Range[#]]), Plus @@ p]) > 0 && Divisible[Times @@ p, m] &] (* Amiram Eldar, Nov 28 2021 *)

A255383 Compositorial mod sum-of-composites.

Original entry on oeis.org

0, 4, 12, 0, 1, 41, 0, 72, 2, 0, 48, 126, 0, 20, 0, 0, 90, 95, 115, 4, 0, 140, 161, 90, 261, 138, 208, 512, 72, 420, 51, 0, 0, 924, 899, 29, 893, 72, 840, 727, 129, 1185, 194, 732, 1080, 1612, 566, 175, 1352, 1192, 1204, 1360, 428, 957, 2170, 0, 0, 513, 2240
Offset: 1

Views

Author

Walter Carlini, May 14 2015

Keywords

Examples

			For n = 5, a(5) = (4*6*8*9*10) mod (4+6+8+9+10) = 17280 mod 37 = 1.
		

Crossrefs

Programs

  • Mathematica
    comp=Select[Range[2,83],!PrimeQ[#]&];Mod[Rest[FoldList[Times,1,comp]],Accumulate[comp]] (* Ivan N. Ianakiev, May 22 2015 *)

Formula

a(n) = A036691(n) mod A053767(n).

Extensions

More terms from Alois P. Heinz, May 21 2015
Showing 1-3 of 3 results.