cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255255 Number of 2-colorings of a 4 X n rectangle such that no nontrivial subsquare has monochromatic corners.

Original entry on oeis.org

1, 16, 178, 1498, 10980, 85138, 655090, 5115398, 39914386, 312388874, 2436283602, 18994966598, 148059349634, 1154792660474, 9007078544234, 70254124462638, 547921292697778, 4273303250042966, 33327954035543034, 259932116476519958, 2027268764564330754
Offset: 0

Views

Author

Alois P. Heinz, Feb 19 2015

Keywords

Crossrefs

Column k=4 of A255256.
Cf. A133357.

Programs

  • Maple
    gf:= -(4608*x^78 +3840*x^77 +84224*x^76 -320640*x^75 +246976*x^74 -756544*x^73 -2238400*x^72 +5321120*x^71 +12808672*x^70 +54862128*x^69 -56935120*x^68 -320396192*x^67 +196696056*x^66 +580449400*x^65 -800166640*x^64 +931676252*x^63 -3217094764*x^62 -2931282696*x^61 +15075340414*x^60 -25189807228*x^59 +8940907182*x^58 +72225838335*x^57 -79785446783*x^56 +16049408070*x^55 +94923048557*x^54 -184157650742*x^53 +84396466384*x^52 +63222211250*x^51 -205358037404*x^50
    +102077559913*x^49 -54179691207*x^48 -58933050614*x^47 -72350094400*x^46 +119755954460*x^45 +391109674279*x^44 -31136120454*x^43 +7469466171*x^42 +4087734421*x^41 -259850982087*x^40 -250072129598*x^39 -106581496436*x^38 +208831935210*x^37 +402861489180*x^36 +109203162981*x^35 -275403863093*x^34 -334505242945*x^33 -114680900580*x^32 +196805363764*x^31 +294322652328*x^30 +163414286266*x^29
    +9671161820*x^28 -93783726011*x^27 -117305441726*x^26 -63470276869*x^25 -4776176481*x^24 +17768047304*x^23 +14651146288*x^22 +7623498972*x^21 +4260618627*x^20 +1317986665*x^19 -720102442*x^18 -787824686*x^17 -195158015*x^16 +30687326*x^15 +15478943*x^14 +9512482*x^13 +14257207*x^12 +7365310*x^11 -194075*x^10 -1591059*x^9 -609139*x^8 -99289*x^7 +358*x^6 +4060*x^5 +1728*x^4 +632*x^3 +117*x^2 +14*x +1) /
    (-2304*x^76 -4224*x^75 -48832*x^74 +106368*x^73 -28736*x^72 +387264*x^71 +1606752*x^70 -417728*x^69 -6732224*x^68 -32605960*x^67 -17678016*x^66 +104280356*x^65 +13666240*x^64 -287868964*x^63 +243731588*x^62 -345759930*x^61 +338343404*x^60 +2718472224*x^59 -4711903718*x^58 +5420902529*x^57 +8555023111*x^56 -23454331276*x^55 +9026831269*x^54
    +16445485090*x^53 -42633850200*x^52 +27124456832*x^51 +15867136764*x^50 -59350410523*x^49 +30378083319*x^48 +11917445228*x^47 -36411691280*x^46 +24780724314*x^45 +72006964843*x^44 +20800791816*x^43 -64959622007*x^42 -16674723587*x^41 +8311317841*x^40 -41851983658*x^39 -10878840512*x^38 +60227329766*x^37 +71646302640*x^36 +111795917*x^35 -98969183331*x^34 -102248503015*x^33 +13126172584*x^32 +108338140330*x^31
    +80553248220*x^30 -4243013616*x^29 -43486302952*x^28 -28181948095*x^27 -3688188878*x^26 +4299265271*x^25 +2263896509*x^24 +739802084*x^23 +845394966*x^22 +509931484*x^21 -127596363*x^20 -330548479*x^19 -74104054*x^18 +132481026*x^17 +79485565*x^16 +21861608*x^15 +12380793*x^14 +5359440*x^13 +161495*x^12 -1832730*x^11 -1066905*x^10 -274895*x^9 -73293*x^8 -3043*x^7 +5244*x^6 +1760*x^5 +358*x^4 +46*x^3 +29*x^2 +2*x -1):
    a:= n-> coeff(series(gf, x, n+1), x, n):
    seq(a(n), n=0..30);

Formula

G.f.: see Maple program.