A255365 Expansion of phi(-x^3) * phi(-x^48) / chi(-x^16) in powers of x where phi(), chi() are Ramanujan theta functions.
1, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, -2, 2, 0, 0, 0, 1, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, -2, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 3, 0, 0, -2
Offset: 0
Keywords
Examples
G.f. = 1 - 2*x^3 + 2*x^12 + x^16 - 2*x^19 - 2*x^27 + 2*x^28 + x^32 + ... G.f. = q^2 - 2*q^11 + 2*q^38 + q^50 - 2*q^59 - 2*q^83 + 2*q^86 + q^98 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ QPochhammer[ -x^16, x^16] EllipticTheta[ 4, 0, x^3] EllipticTheta[ 3, 0, x^48], {x, 0, n}]; a[n_]:=SeriesCoefficient[EllipticTheta[3,0,-x^3]*EllipticTheta[3,0,-x^48 ]/QPochhammer[x^16, x^32], {x, 0, n}]; Table[a[n], {n,0,100}] (* G. C. Greubel, Mar 14 2018 *)
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A)^2 * eta(x^32 + A) * eta(x^48 + A)^2 / (eta(x^6 + A) * eta(x^16 + A) * eta(x^96 + A)), n))};
-
PARI
{a(n) = my(A, p, e); if( n<0 || n%4==1, 0, n = 3*n+2; A = factor(n); - prod( k=1, matsize(A)[1], if( p=A[k, 1], e=A[k, 2]; if( p==2, -(e==1), if( p==3, 0, if( p%8 < 4, e+1, 1-e%2))))))};
Comments