A255313 Triangle read by rows: row n contains the sums of adjacent pairs of terms in row n of A088643.
3, 5, 3, 7, 5, 3, 7, 5, 7, 5, 11, 7, 5, 7, 5, 13, 11, 7, 5, 7, 5, 13, 11, 13, 11, 7, 5, 3, 17, 13, 11, 13, 11, 7, 5, 3, 19, 17, 13, 11, 13, 11, 7, 5, 3, 19, 17, 19, 17, 13, 11, 7, 5, 7, 5, 23, 19, 17, 19, 17, 13, 11, 7, 5, 7, 5, 23, 19, 17, 19, 23, 19, 13
Offset: 1
Examples
. n | T(n,k) | A255316 . ---+--------------------------------------------+---------------------- . 1 | 3 | 3 . 2 | 5 3 | 3 5 . 3 | 7 5 3 | 3 5 7 . 4 | 7 5 7 5 | 5 7 . 5 | 11 7 5 7 5 | 5 7 11 . 6 | 13 11 7 5 7 5 | 5 7 11 13 . 7 | 13 11 13 11 7 5 3 | 3 5 7 11 13 . 8 | 17 13 11 13 11 7 5 3 | 3 5 7 11 13 17 . 9 | 19 17 13 11 13 11 7 5 3 | 3 5 7 11 13 17 19 . 10 | 19 17 19 17 13 11 7 5 7 5 | 5 7 11 13 17 19 . 11 | 23 19 17 19 17 13 11 7 5 7 5 | 5 7 11 13 17 19 23 . 12 | 23 19 17 19 23 19 13 11 7 5 7 5 | 5 7 11 13 17 19 23 . 13 | 23 19 23 19 17 23 19 11 7 11 13 7 3 | 3 7 11 13 17 19 23 . 14 | 29 23 19 23 19 17 23 19 11 7 11 13 7 3 | 3 7 11 13 17 19 23 29
Links
- Reinhard Zumkeller, Rows n = 1..125 of triangle, flattened
Programs
-
Haskell
a255313 n k = a255313_tabl !! (n-1) !! (k-1) a255313_row n = a255313_tabl !! (n-1) a255313_tabl = zipWith (zipWith (+)) tss $ map tail tss where tss = tail a088643_tabl
-
Mathematica
(* A is A088643 *) A[n_, 1] := n; A[n_, k_] := A[n, k] = For[m = n-1, m >= 1, m--, If[PrimeQ[m + A[n, k-1]] && FreeQ[Table[A[n, j], {j, 1, k-1}], m], Return[m]]]; T[n_] := T[n] = 2 MovingAverage[Table[A[n+1, k], {k, 1, n+1}], {1, 1}]; Array[T, 14] // Flatten (* Jean-François Alcover, Aug 02 2021 *)
Comments