cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A255313 Triangle read by rows: row n contains the sums of adjacent pairs of terms in row n of A088643.

Original entry on oeis.org

3, 5, 3, 7, 5, 3, 7, 5, 7, 5, 11, 7, 5, 7, 5, 13, 11, 7, 5, 7, 5, 13, 11, 13, 11, 7, 5, 3, 17, 13, 11, 13, 11, 7, 5, 3, 19, 17, 13, 11, 13, 11, 7, 5, 3, 19, 17, 19, 17, 13, 11, 7, 5, 7, 5, 23, 19, 17, 19, 17, 13, 11, 7, 5, 7, 5, 23, 19, 17, 19, 23, 19, 13
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 22 2015

Keywords

Comments

All terms are prime by definition of A088643.
See A255313 for sorted distinct terms and A255395 for number of distinct terms.

Examples

			.  n |                  T(n,k)                    |       A255316
. ---+--------------------------------------------+----------------------
.  1 |  3                                         | 3
.  2 |  5  3                                      | 3 5
.  3 |  7  5  3                                   | 3 5  7
.  4 |  7  5  7  5                                | 5 7
.  5 | 11  7  5  7  5                             | 5 7 11
.  6 | 13 11  7  5  7  5                          | 5 7 11 13
.  7 | 13 11 13 11  7  5  3                       | 3 5  7 11 13
.  8 | 17 13 11 13 11  7  5  3                    | 3 5  7 11 13 17
.  9 | 19 17 13 11 13 11  7  5  3                 | 3 5  7 11 13 17 19
. 10 | 19 17 19 17 13 11  7  5  7  5              | 5 7 11 13 17 19
. 11 | 23 19 17 19 17 13 11  7  5  7  5           | 5 7 11 13 17 19 23
. 12 | 23 19 17 19 23 19 13 11  7  5  7  5        | 5 7 11 13 17 19 23
. 13 | 23 19 23 19 17 23 19 11  7 11 13  7  3     | 3 7 11 13 17 19 23
. 14 | 29 23 19 23 19 17 23 19 11  7 11 13  7  3  | 3 7 11 13 17 19 23 29
		

Crossrefs

Programs

  • Haskell
    a255313 n k = a255313_tabl !! (n-1) !! (k-1)
    a255313_row n = a255313_tabl !! (n-1)
    a255313_tabl = zipWith (zipWith (+)) tss $ map tail tss
                   where tss = tail a088643_tabl
  • Mathematica
    (* A is A088643 *)
    A[n_, 1] := n;
    A[n_, k_] := A[n, k] = For[m = n-1, m >= 1, m--, If[PrimeQ[m + A[n, k-1]] && FreeQ[Table[A[n, j], {j, 1, k-1}], m], Return[m]]];
    T[n_] := T[n] = 2 MovingAverage[Table[A[n+1, k], {k, 1, n+1}], {1, 1}];
    Array[T, 14] // Flatten (* Jean-François Alcover, Aug 02 2021 *)

Formula

T(n,k) = A088643(n,k-1) + A088643(n,k), 1 <= k <= n;
T(n,1) = A060265(n+1);

A255316 Distinct terms in triangle A255313, table read by rows.

Original entry on oeis.org

3, 3, 5, 3, 5, 7, 5, 7, 5, 7, 11, 5, 7, 11, 13, 3, 5, 7, 11, 13, 3, 5, 7, 11, 13, 17, 3, 5, 7, 11, 13, 17, 19, 5, 7, 11, 13, 17, 19, 5, 7, 11, 13, 17, 19, 23, 5, 7, 11, 13, 17, 19, 23, 3, 7, 11, 13, 17, 19, 23, 3, 7, 11, 13, 17, 19, 23, 29, 3, 7, 11, 13, 17
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 22 2015

Keywords

Examples

			See A255313.
		

Crossrefs

Cf. A255313, A255395 (row lengths), A255427 (row products).

Programs

  • Haskell
    import Data.List (nub, sort)
    a255316 n k = a255316_tabf !! (n-1) !! (k-1)
    a255316_row n = a255316_tabf !! (n-1)
    a255316_tabf = map (sort . nub) a255313_tabl
  • Mathematica
    (* A is A088643 *)
    A[n_, 1] := n;
    A[n_, k_] := A[n, k] = For[m = n - 1, m >= 1, m--,
         If[PrimeQ[m + A[n, k - 1]] &&
         FreeQ[Table[A[n, j], {j, 1, k - 1}], m], Return[m]]];
    T[n_] := T[n] = Union[2 MovingAverage[
         Table[A[n+1, k], {k, 1, n+1}], {1, 1}]];
    Array[T, 20] // Flatten (* Jean-François Alcover, Aug 02 2021 *)

A255427 a(n) = product of distinct terms of row n in triangle A255313.

Original entry on oeis.org

3, 15, 105, 35, 385, 5005, 15015, 255255, 4849845, 1616615, 37182145, 37182145, 22309287, 646969323, 20056049013, 33426748355, 33426748355, 1236789689135, 1236789689135, 50708377254535, 2180460221945005, 2180460221945005, 102481630431415235
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 22 2015

Keywords

Comments

Product of row n of table A255316;
A001221(a(n)) = A001222(a(n)) = A255395(n);
A006530(a(n)) = A060265(n).

Crossrefs

Programs

  • Haskell
    import Data.List (nub)
    a255427 = product . nub . a255313_row
Showing 1-3 of 3 results.