cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255406 Expansion of the hyperbolic arc lemniscate tangent function.

Original entry on oeis.org

1, 18, 26460, 288149400, 11799717930000, 1303467640855380000, 318564884489773161240000, 150951970515479012453574000000, 126206413988876537942059614180000000, 173464405707011357574463836709701000000000, 370958141678992170468287850863450040726000000000
Offset: 0

Views

Author

Peter Bala, Feb 22 2015

Keywords

Comments

Gauss's hyperbolic arc lemniscate sine function arcslh(x) is defined by arcslh(x) = Integral_{t = 0..x} 1/sqrt(1 + t^4) dt, for x real. Neuman (2007) introduced the hyperbolic arc lemniscate tangent function arctlh(x), defined by arctlh(x) = arcslh( x/(1 - x^4)^(1/4) ) for |x| < 1.

Examples

			1/sqrt(1 + t^4) = 1 - (1/2)*t^4 + (3/8)*t^8 - ....
arcslh(x) = Integral_{t = 0..x} 1/sqrt(1 + t^4) dt = x - (1/10)*x^5 + (1/24)*x^9 - ....
Hence arctlh(x) = x/(1 - x^4)^(1/4) - (1/10)*x^5/(1 - x^4)^(5/4) + (1/24)*x^9/(1 - x^4)^(9/4) - ... = x + 18*x^5/5! + 26460*x^9/9! + ....
		

Crossrefs

Programs

  • Maple
    a:= n-> mul(k-0^(irem(k, 4)), k=1..4*n): seq(a(n), n=0..11);
  • Mathematica
    nmax=15; Table[(CoefficientList[Series[1/(1-x^4)^(3/4),{x,0,4*nmax}],x] * Range[0,4*nmax]!)[[4*n-3]],{n,1,nmax}] (* Vaclav Kotesovec, Feb 22 2015*)
    Table[Pochhammer[3/4, n]*(4*n)!/n!, {n, 0, 10}] (* Jean-François Alcover, Mar 05 2015 *)
  • PARI
    a(n) = prod(k = 1, 4*n, k - 0^(k % 4)); \\ Michel Marcus, Mar 03 2015

Formula

a(n) = (n - 1/4)! *(4*n)!/( (-1/4)! * n! ).
a(n) = Product_{k = 1..4*n} k - 0^(k mod 4), where we make the usual convention that 0^0 = 1. Cf. A001818 ( Product_{k = 1..2*n} k - 0^(k mod 2) ) and A158111 ( Product {k = 1..3*n} k - 0^(k mod 3) ).
G.f.: arctlh(x) = x + 18*x^5/5! + 26460*x^9/9! + 288149400*x^13/13! + ....
d/dx( arctlh(x) ) = 1/(1 - x^4)^(3/4) = 1 + 18*x^4/4! + 26460*x^8/8! + 288149400*x^12/12! + ....
a(n) ~ (4*n)! / (n^(1/4) * Gamma(3/4)). - Vaclav Kotesovec, Feb 22 2015