A255413 a(n) = 15*n - 11 + (n mod 2). Row 3 of Ludic array A255127.
5, 19, 35, 49, 65, 79, 95, 109, 125, 139, 155, 169, 185, 199, 215, 229, 245, 259, 275, 289, 305, 319, 335, 349, 365, 379, 395, 409, 425, 439, 455, 469, 485, 499, 515, 529, 545, 559, 575, 589, 605, 619, 635, 649, 665, 679, 695, 709, 725, 739, 755, 769, 785, 799, 815, 829, 845, 859, 875, 889, 905, 919, 935, 949, 965, 979, 995, 1009
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10001
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Programs
-
Mathematica
a[n_] := 15 n + Mod[n, 2] - 11; Array[a, 100] (* Jean-François Alcover, Mar 14 2016 *)
-
PARI
apply( {A255413(n)=15*n-11+n%2}, [1..50]) \\ M. F. Hasler, Nov 09 2024
-
Scheme
;; two alternatives: (define (A255413 n) (A255127bi 3 n)) ;; Code for A255127bi given in A255127. (define (A255413 n) (A007310 (- (* 5 n) 3)))
Formula
a(n) = A007310((5*n)-3).
a(2n+1) = 5*A016921(n) for all n >= 0.
From M. F. Hasler, Nov 09 2024: (Start)
a(n) = a(n-1) + a(n-2) + a(n-3) for n > 3, a(1..3) = (5, 19, 35).
a(n) = a(n-2) + 30 for n > 2, with a(1..2) = (5, 19).
a(2n-1) = 30n - 25, a(2n) = 30n - 11.
G.f.: x*(5 + 14*x + 11*x^2)/((1 - x)^2*(1 + x)). (End)
E.g.f.: 11 + (15*x - 11)*cosh(x) + 5*(3*x - 2)*sinh(x). - Stefano Spezia, Nov 12 2024
Extensions
New definition from M. F. Hasler, Nov 09 2024