A255414 Row 4 of Ludic array A255127.
7, 31, 59, 85, 113, 137, 163, 191, 217, 241, 269, 295, 323, 347, 373, 401, 427, 451, 479, 505, 533, 557, 583, 611, 637, 661, 689, 715, 743, 767, 793, 821, 847, 871, 899, 925, 953, 977, 1003, 1031, 1057, 1081, 1109, 1135, 1163, 1187, 1213, 1241, 1267, 1291, 1319, 1345, 1373, 1397, 1423, 1451, 1477, 1501, 1529, 1555, 1583, 1607, 1633, 1661
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10001
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,1,-1).
Programs
Formula
From M. F. Hasler, Nov 09 2024: (Start)
a(n) = a(n-8) + 210 = 210*floor((n-1)/8) + a((n-1)%8 + 1), where % is the modulo or remainder operation.
a(n) = a(n-1) + a(n-8) - a(n-9) for n > 9, with a(1..9) given in DATA.
G.f.: x*(7 + 24*x + 28*x^2 + 26*x^3 + 28*x^4 + 24*x^5 + 26*x^6 + 28*x^7 + 19*x^8)/D with D = 1 - x - x^8 + x^9 = (1 + x^4)(1 - x^4) = (1 + x^4)(1 + x^2)(1 + x)(1 - x). (End)