cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255416 Row 6 of Ludic array A255127.

Original entry on oeis.org

13, 73, 133, 197, 263, 325, 385, 449, 511, 571, 641, 701, 761, 823, 887, 947, 1013, 1075, 1139, 1199, 1261, 1327, 1387, 1447, 1513, 1573, 1637, 1703, 1763, 1825, 1889, 1951, 2011, 2071, 2141, 2201, 2261, 2327, 2387, 2453, 2515, 2575, 2639, 2699, 2767, 2827, 2887, 2953, 3013, 3073, 3143, 3203, 3265, 3325, 3389, 3451, 3511, 3581, 3641, 3701
Offset: 1

Views

Author

Antti Karttunen, Feb 22 2015

Keywords

Crossrefs

Row 6 of A255127. See A255415 for row 5 and A255417 for row 7.

Programs

  • PARI
    my(L=[x+2^(x%2)|x<-[1..10^4]*3], m(n,k)=2^(n\/k*k)\(2^k-1)); for(i=3, 5, L=vecextract(L, 2^#L-m(#L, L[1])-1)); L255416=vecextract(L, m(#L, L[1]));
    A255416(n)=n--\480*30030+L255416[n%480+1] \\ M. F. Hasler, Nov 17 2024
    
  • Python
    def A255416(n):
        try: n-=1; return A255416.L[n]
        except IndexError: return n//480*30030 + A255416.L[n%480]
        except AttributeError: L = [3*x+5-(x&1) for x in range(10**4)]
        for k in L[:3]: L = [x for i,x in enumerate(L) if i%k]
        A255416.L = L[::13]; return n//480*30030 + A255416.L[n%480]
    # M. F. Hasler, Nov 17 2024
  • Scheme
    (define (A255416 n) (A255127bi 6 n)) ;; Code for A255127bi given in A255127.
    

Formula

a(n) = A255407(A084970(n)).
a(n) = a(n-480) + 30030 = 30030*floor((n-1)/480) + a((n-1)%480 + 1), where % is the modulo or remainder operator. - M. F. Hasler, Nov 10 2024 and Nov 17 2024