A255416 Row 6 of Ludic array A255127.
13, 73, 133, 197, 263, 325, 385, 449, 511, 571, 641, 701, 761, 823, 887, 947, 1013, 1075, 1139, 1199, 1261, 1327, 1387, 1447, 1513, 1573, 1637, 1703, 1763, 1825, 1889, 1951, 2011, 2071, 2141, 2201, 2261, 2327, 2387, 2453, 2515, 2575, 2639, 2699, 2767, 2827, 2887, 2953, 3013, 3073, 3143, 3203, 3265, 3325, 3389, 3451, 3511, 3581, 3641, 3701
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10001
Programs
-
PARI
my(L=[x+2^(x%2)|x<-[1..10^4]*3], m(n,k)=2^(n\/k*k)\(2^k-1)); for(i=3, 5, L=vecextract(L, 2^#L-m(#L, L[1])-1)); L255416=vecextract(L, m(#L, L[1])); A255416(n)=n--\480*30030+L255416[n%480+1] \\ M. F. Hasler, Nov 17 2024
-
Python
def A255416(n): try: n-=1; return A255416.L[n] except IndexError: return n//480*30030 + A255416.L[n%480] except AttributeError: L = [3*x+5-(x&1) for x in range(10**4)] for k in L[:3]: L = [x for i,x in enumerate(L) if i%k] A255416.L = L[::13]; return n//480*30030 + A255416.L[n%480] # M. F. Hasler, Nov 17 2024
-
Scheme
(define (A255416 n) (A255127bi 6 n)) ;; Code for A255127bi given in A255127.
Formula
a(n) = a(n-480) + 30030 = 30030*floor((n-1)/480) + a((n-1)%480 + 1), where % is the modulo or remainder operator. - M. F. Hasler, Nov 10 2024 and Nov 17 2024