cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255495 2nd diagonal of triangle in A255494.

Original entry on oeis.org

1, 13, 130, 1106, 8575, 62475, 435576, 2939208, 19342285, 124800361, 792586270, 4969028750, 30822650251, 189500937303, 1156406300340, 7012380492516, 42294614785465, 253926386816725, 1518506730836026, 9050029200532298, 53778595325886295, 318762380704793571, 1885254096749834160
Offset: 0

Views

Author

N. J. A. Sloane, Mar 06 2015

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,13,130,1106,8575,62475]; [n le 6 select I[n] else 14*Self(n-1) - 56*Self(n-2) +14*Self(n-3) +189*Self(n-4) + 84*Self(n-5) -20*Self(n-6): n in [1..31]]; // G. C. Greubel, Sep 20 2021
    
  • Mathematica
    a[n_]:= (1/2)*(Fibonacci[n+3, 2]*Fibonacci[n+4, 2] + 2^(n+4)*Fibonacci[n+4, 2] - 2*5^(n+3));
    Table[a[n], {n,0,30}] (* G. C. Greubel, Sep 20 2021 *)
  • Sage
    def P(n): return lucas_number1(n, 2, -1)
    def A255495(n): return (1/2)*(P(n+3)*P(n+4) + 2^(n+4)*P(n+4) - 2*5^(n+3))
    [A255495(n) for n in (0..30)] # G. C. Greubel, Sep 20 2021

Formula

G.f.: (1 -x +4*x^2)/((1+x)*(1-5*x)*(1-6*x+x^2)*(1-4*x-4*x^2)). - R. J. Mathar, Jun 14 2015
From G. C. Greubel, Sep 20 2021: (Start)
a(n) = (1/2)*(P(n+3)*P(n+4) + 2^(n+4)*P(n+4) - 2*5^(n+3)), where P(n) = A000129(n).
a(n) = 5*a(n-1) + P(n+1)*(P(n+3) - 2^(n+2)) = 5*a(n) + P(n+1)*A094706(n+1). (End)

Extensions

Terms a(13) onward from G. C. Greubel, Sep 20 2021