A255495 2nd diagonal of triangle in A255494.
1, 13, 130, 1106, 8575, 62475, 435576, 2939208, 19342285, 124800361, 792586270, 4969028750, 30822650251, 189500937303, 1156406300340, 7012380492516, 42294614785465, 253926386816725, 1518506730836026, 9050029200532298, 53778595325886295, 318762380704793571, 1885254096749834160
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- S. Falcon, On The Generating Functions of the Powers of the K-Fibonacci Numbers, Scholars Journal of Engineering and Technology (SJET), 2014; 2 (4C):669-675.
- Index entries for linear recurrences with constant coefficients, signature (14,-56,14,189,84,-20).
Programs
-
Magma
I:=[1,13,130,1106,8575,62475]; [n le 6 select I[n] else 14*Self(n-1) - 56*Self(n-2) +14*Self(n-3) +189*Self(n-4) + 84*Self(n-5) -20*Self(n-6): n in [1..31]]; // G. C. Greubel, Sep 20 2021
-
Mathematica
a[n_]:= (1/2)*(Fibonacci[n+3, 2]*Fibonacci[n+4, 2] + 2^(n+4)*Fibonacci[n+4, 2] - 2*5^(n+3)); Table[a[n], {n,0,30}] (* G. C. Greubel, Sep 20 2021 *)
-
Sage
def P(n): return lucas_number1(n, 2, -1) def A255495(n): return (1/2)*(P(n+3)*P(n+4) + 2^(n+4)*P(n+4) - 2*5^(n+3)) [A255495(n) for n in (0..30)] # G. C. Greubel, Sep 20 2021
Formula
G.f.: (1 -x +4*x^2)/((1+x)*(1-5*x)*(1-6*x+x^2)*(1-4*x-4*x^2)). - R. J. Mathar, Jun 14 2015
From G. C. Greubel, Sep 20 2021: (Start)
a(n) = (1/2)*(P(n+3)*P(n+4) + 2^(n+4)*P(n+4) - 2*5^(n+3)), where P(n) = A000129(n).
a(n) = 5*a(n-1) + P(n+1)*(P(n+3) - 2^(n+2)) = 5*a(n) + P(n+1)*A094706(n+1). (End)
Extensions
Terms a(13) onward from G. C. Greubel, Sep 20 2021