A255494
Triangle read by rows: coefficients of numerator of generating functions for powers of Pell numbers.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 13, 13, 1, 1, 38, 130, 38, 1, 1, 105, 1106, 1106, 105, 1, 1, 280, 8575, 26544, 8575, 280, 1, 1, 729, 62475, 567203, 567203, 62475, 729, 1, 1, 1866, 435576, 11179686, 32897774, 11179686, 435576, 1866, 1, 1, 4717, 2939208, 207768576, 1736613466, 1736613466, 207768576, 2939208, 4717, 1
Offset: 0
Triangle begins:
1;
1, 1; # see A079291
1, 4, 1; # see A110272
1, 13, 13, 1;
1, 38, 130, 38, 1;
1, 105, 1106, 1106, 105, 1;
1, 280, 8575, 26544, 8575, 280, 1;
1, 729, 62475, 567203, 567203, 62475, 729, 1;
1, 1866, 435576, 11179686, 32897774, 11179686, 435576, 1866, 1;
-
P:= func< n | Round(((1 + Sqrt(2))^n - (1 - Sqrt(2))^n)/(2*Sqrt(2))) >;
function T(n,k)
if k eq 0 or k eq n then return 1;
else return P(n-k+1)*T(n-1,k-1) + P(k+1)*T(n-1,k);
end if; return T;
end function;
[T(n,k): k in [0..n], n in [0..12]];
-
T[n_, k_]:= T[n,k]= If[k==0 || k==n, 1, Fibonacci[n-k+1, 2]*T[n-1, k-1] + Fibonacci[k+1, 2]*T[n-1, k]]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 19 2021 *)
-
@CachedFunction
def P(n): return lucas_number1(n, 2, -1)
def T(n,k): return 1 if (k==0 or k==n) else P(n-k+1)*T(n-1, k-1) + P(k+1)*T(n-1, k)
flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Sep 19 2021
A255496
3rd diagonal of triangle in A255494.
Original entry on oeis.org
1, 38, 1106, 26544, 567203, 11179686, 207768576, 3692419776, 63361188037, 1057109514902, 17235551954894, 275697361933728, 4339725043253447, 67384965236252310, 1034147721558836220, 15711425790758327952, 236612932874975360809, 3536182524466029241958, 52494462902614684280330
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..850
- S. Falcon, On The Generating Functions of the Powers of the K-Fibonacci Numbers, Scholars Journal of Engineering and Technology (SJET), 2014; 2 (4C):669-675.
- Index entries for linear recurrences with constant coefficients, signature (44,-649,2770,11885,-65240,-215431,-67286,139956,-23560,-2400).
-
a[n_]:= (12)^(n+4) -(-2)^(n+1) -2^n*LucasL[2*n+9, 2] -5^(n+4)*Fibonacci[n+5, 2] +(1/10)*Fibonacci[n+4, 2]*(Fibonacci[n+4, 2]^2 +(-1)^n);
Table[a[n], {n, 0, 30}] (* G. C. Greubel, Sep 20 2021 *)
-
def P(n): return lucas_number1(n, 2, -1)
def Q(n): return lucas_number2(n, 2, -1)
def a(n): return (12)^(n+4) - (-2)^(n+1) - 2^n*Q(2*n+9) - 5^(n+4)*P(n+5) + (1/10)*P(n+4)*(P(n+4)^2 + (-1)^n)
[a(n) for n in (0..30)] # G. C. Greubel, Sep 20 2021
A255497
4th diagonal of triangle in A255494.
Original entry on oeis.org
1, 105, 8575, 567203, 32897774, 1736613466, 85474679858, 3985272984490, 177983686766655, 7675333342669951, 321533970710475033, 13145650587005246037, 526435406695455725140, 20710119055883150135480, 802278112017623387734420, 30663507276425403310594244, 1158197029073059563909854477
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..600
- S. Falcon, On The Generating Functions of the Powers of the K-Fibonacci Numbers, Scholars Journal of Engineering and Technology (SJET), 2014; 2 (4C):669-675.
- Index entries for linear recurrences with constant coefficients, signature (131, -6288, 119160,-72338,-20691314,43119120,1745477304, 5765440363,-4766158745, -22941732072,25990149864,-2819340784,-2805312400,-199344000,8352000).
-
A255496[n_]:= (12)^(n+4) -(-2)^(n+1) -2^n*LucasL[2*n+9, 2] -5^(n+4)*Fibonacci[n+5, 2] +(1/10)*Fibonacci[n+4, 2]*(Fibonacci[n+4, 2]^2 +(-1)^n);
a[n_]:= a[n]= If[n<2, (105)^n, 29*a[n-1] + Fibonacci[n+1,2]*A255496[n]];
Table[a[n], {n,0,30}] (* G. C. Greubel, Sep 20 2021 *)
-
def P(n): return lucas_number1(n, 2, -1)
def Q(n): return lucas_number2(n, 2, -1)
def a(n): return (1/7680)*( 7680*(29)^(n+5) -192*(-5)^(n+6) -30 + Q(4*n+18) -96*5^(n+6)*Q(2*n+11) +12*(-1)^n*Q(2*n+9) +3*2^(n+10)*P(3*n+15) -640*(12)^(n+6)*P(n+6) -15*(-2)^(n+10)*P(n+5) )
[a(n) for n in (0..30)] # G. C. Greubel, Sep 20 2021
A255498
5th diagonal of triangle in A255494.
Original entry on oeis.org
1, 280, 62475, 11179686, 1736613466, 243125885240, 31464032862802, 3828473678068060, 443307088929919375, 49283438913963499728, 5295767249826282145413, 552902424623732460251730, 56318224867097916236530640, 5615280578269206770801490160, 549533929275081475149009571700
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- S. Falcon, On The Generating Functions of the Powers of the K-Fibonacci Numbers, Scholars Journal of Engineering and Technology (SJET), 2014; 2 (4C):669-675.
- Index entries for linear recurrences with constant coefficients, signature (376, -54802, 3630508, -75022815, -2846082932, 114238747024, 1577306027464, -52069433611135, -1016200021352656, -3020413156112394, 29965893152789468, 72435932210073135, -546365140007154292, 650692815293657132, 267744542455319216, -440297864251362544, -214251046924716480, -9998773345956800, 3992836965024000, -117063803520000, -2034547200000).
-
P[n_]:= Fibonacci[n,2]; Q[n_]:= LucasL[n,2];
A255497[n_]:= (1/7680)*(7680*(29)^(n+5) -192*(-5)^(n+6) -30 +Q[4*n+18] -96*5^(n+6)*Q[2*n+11] +12*(-1)^n*Q[2*n+9] +3*2^(n+10)*P[3*n+15] -640*(12)^(n+6)*P[n+6] -15*(-2)^(n+10)*P[n+5]);
a[n_]:= a[n]= If[n<2, (280)^n, 70*a[n-1] +P[n+1]*A255497[n]];
Table[a[n], {n, 0, 30}] (* G. C. Greubel, Sep 22 2021 *)
-
@CachedFunction
def P(n): return lucas_number1(n, 2, -1)
def Q(n): return lucas_number2(n, 2, -1)
def A255497(n): return (1/7680)*( 7680*(29)^(n+5) -192*(-5)^(n+6) -30 + Q(4*n+18) -96*5^(n+6)*Q(2*n+11) +12*(-1)^n*Q(2*n+9) +3*2^(n+10)*P(3*n+15) -640*(12)^(n+6)*P(n+6) -15*(-2)^(n+10)*P(n+5) )
def a(n): return (280)^n if (n<2) else 70*a(n-1) + P(n+1)*A255497(n)
[a(n) for n in (0..30)] # G. C. Greubel, Sep 20 2021
Showing 1-4 of 4 results.
Comments