cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A255494 Triangle read by rows: coefficients of numerator of generating functions for powers of Pell numbers.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 13, 13, 1, 1, 38, 130, 38, 1, 1, 105, 1106, 1106, 105, 1, 1, 280, 8575, 26544, 8575, 280, 1, 1, 729, 62475, 567203, 567203, 62475, 729, 1, 1, 1866, 435576, 11179686, 32897774, 11179686, 435576, 1866, 1, 1, 4717, 2939208, 207768576, 1736613466, 1736613466, 207768576, 2939208, 4717, 1
Offset: 0

Views

Author

N. J. A. Sloane, Mar 06 2015

Keywords

Comments

Note that Table 8 by Falcon should be labeled with the powers n (not r) and that the labels are off by 1. - R. J. Mathar, Jun 14 2015

Examples

			Triangle begins:
  1;
  1,    1; # see A079291
  1,    4,      1; # see A110272
  1,   13,     13,        1;
  1,   38,    130,       38,        1;
  1,  105,   1106,     1106,      105,        1;
  1,  280,   8575,    26544,     8575,      280,      1;
  1,  729,  62475,   567203,   567203,    62475,    729,    1;
  1, 1866, 435576, 11179686, 32897774, 11179686, 435576, 1866, 1;
		

Crossrefs

Programs

  • Magma
    P:= func< n | Round(((1 + Sqrt(2))^n - (1 - Sqrt(2))^n)/(2*Sqrt(2))) >;
    function T(n,k)
      if k eq 0 or k eq n then return 1;
      else return P(n-k+1)*T(n-1,k-1) + P(k+1)*T(n-1,k);
      end if; return T;
    end function;
    [T(n,k): k in [0..n], n in [0..12]];
    
  • Mathematica
    T[n_, k_]:= T[n,k]= If[k==0 || k==n, 1, Fibonacci[n-k+1, 2]*T[n-1, k-1] + Fibonacci[k+1, 2]*T[n-1, k]]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 19 2021 *)
  • Sage
    @CachedFunction
    def P(n): return lucas_number1(n, 2, -1)
    def T(n,k): return 1 if (k==0 or k==n) else P(n-k+1)*T(n-1, k-1) + P(k+1)*T(n-1, k)
    flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Sep 19 2021

Formula

From G. C. Greubel, Sep 19 2021: (Start)
T(n, k) = P(n-k+1)*T(n-1, k-1) + P(k+1)*T(n-1, k), where T(n, 0) = T(n, n) = 1 and P(n) = A000129(n).
T(n, k) = T(n, n-k).
T(n, 1) = A094706(n).
T(n, 2) = A255495(n-2).
T(n, 3) = A255496(n-3).
T(n, 4) = A255497(n-4).
T(n, 5) = A255498(n-5). (End)

A255496 3rd diagonal of triangle in A255494.

Original entry on oeis.org

1, 38, 1106, 26544, 567203, 11179686, 207768576, 3692419776, 63361188037, 1057109514902, 17235551954894, 275697361933728, 4339725043253447, 67384965236252310, 1034147721558836220, 15711425790758327952, 236612932874975360809, 3536182524466029241958, 52494462902614684280330
Offset: 0

Views

Author

N. J. A. Sloane, Mar 06 2015

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:= (12)^(n+4) -(-2)^(n+1) -2^n*LucasL[2*n+9, 2] -5^(n+4)*Fibonacci[n+5, 2] +(1/10)*Fibonacci[n+4, 2]*(Fibonacci[n+4, 2]^2 +(-1)^n);
    Table[a[n], {n, 0, 30}] (* G. C. Greubel, Sep 20 2021 *)
  • Sage
    def P(n): return lucas_number1(n, 2, -1)
    def Q(n): return lucas_number2(n, 2, -1)
    def a(n): return (12)^(n+4) - (-2)^(n+1) - 2^n*Q(2*n+9) - 5^(n+4)*P(n+5) + (1/10)*P(n+4)*(P(n+4)^2 + (-1)^n)
    [a(n) for n in (0..30)] # G. C. Greubel, Sep 20 2021

Formula

From G. C. Greubel, Sep 20 2021: (Start)
a(n) = 12*a(n-1) + P(n+1)*A255495(n), where P(n) = A000129(n).
a(n) = (12)^(n+4) - (-2)^(n+1) - 2^n*Q(2*n+9) - 5^(n+4)*P(n+5) + (1/10)*P(n+4)*(P(n+4)^2 + (-1)^n), where P(n) = A000129(n), Q(n) = A002203(n).
G.f.: (1 -6*x +83*x^2 -228*x^3 -84*x^4 -200*x^5)/((1+2*x)*(1-12*x)*(1 +2*x -x^2)*(1 -10*x -25*x^2)*(1 -12*x +4*x^2)*(1 -14*x -x^2)). (End)

Extensions

3 more terms. - R. J. Mathar, Jun 14 2015
Terms a(12) onward added by G. C. Greubel, Sep 20 2021

A255497 4th diagonal of triangle in A255494.

Original entry on oeis.org

1, 105, 8575, 567203, 32897774, 1736613466, 85474679858, 3985272984490, 177983686766655, 7675333342669951, 321533970710475033, 13145650587005246037, 526435406695455725140, 20710119055883150135480, 802278112017623387734420, 30663507276425403310594244, 1158197029073059563909854477
Offset: 0

Views

Author

N. J. A. Sloane, Mar 06 2015

Keywords

Crossrefs

Programs

  • Mathematica
    A255496[n_]:= (12)^(n+4) -(-2)^(n+1) -2^n*LucasL[2*n+9, 2] -5^(n+4)*Fibonacci[n+5, 2] +(1/10)*Fibonacci[n+4, 2]*(Fibonacci[n+4, 2]^2 +(-1)^n);
    a[n_]:= a[n]= If[n<2, (105)^n, 29*a[n-1] + Fibonacci[n+1,2]*A255496[n]];
    Table[a[n], {n,0,30}] (* G. C. Greubel, Sep 20 2021 *)
  • Sage
    def P(n): return lucas_number1(n, 2, -1)
    def Q(n): return lucas_number2(n, 2, -1)
    def a(n): return (1/7680)*( 7680*(29)^(n+5) -192*(-5)^(n+6) -30 + Q(4*n+18) -96*5^(n+6)*Q(2*n+11) +12*(-1)^n*Q(2*n+9) +3*2^(n+10)*P(3*n+15) -640*(12)^(n+6)*P(n+6) -15*(-2)^(n+10)*P(n+5) )
    [a(n) for n in (0..30)] # G. C. Greubel, Sep 20 2021

Formula

From G. C. Greubel, Sep 20 2021: (Start)
a(n) = 29*a(n-1) + P(n+1)*A255496(n).
a(n) = (1/7680)*( 7680*(29)^(n+5) -192*(-5)^(n+6) -30 + Q(4*n+18) -96*5^(n+6)*Q(2*n+11) +12*(-1)^n*Q(2*n+9) +3*2^(n+10)*P(3*n+15) -640*(12)^(n+6)*P(n+6) -15*(-2)^(n+10)*P(n+5) ), where P(n) = A000129(n) and Q(n) = A002203(n).
G.f.: (1 -26*x +1108*x^2 -15042*x^3 +74319*x^4 +67340*x^5 +1376444*x^6 +2010720*x^7 -323920*x^8 +288000*x^9)/((1-x)*(1+5*x)*(1-29*x)*(1 +4*x -4*x^2)*(1 +6*x +x^2)*(1 -24*x -144*x^2)*(1 -28*x -4*x^2)*(1 -30*x +25*x^2)*(1 -34*x +x^2)).
(End)

Extensions

a(8)-a(10) from R. J. Mathar, Jun 14 2015
Terms a(11) onward added by G. C. Greubel, Sep 20 2021

A255498 5th diagonal of triangle in A255494.

Original entry on oeis.org

1, 280, 62475, 11179686, 1736613466, 243125885240, 31464032862802, 3828473678068060, 443307088929919375, 49283438913963499728, 5295767249826282145413, 552902424623732460251730, 56318224867097916236530640, 5615280578269206770801490160, 549533929275081475149009571700
Offset: 0

Views

Author

N. J. A. Sloane, Mar 06 2015

Keywords

Crossrefs

Programs

  • Mathematica
    P[n_]:= Fibonacci[n,2]; Q[n_]:= LucasL[n,2];
    A255497[n_]:= (1/7680)*(7680*(29)^(n+5) -192*(-5)^(n+6) -30 +Q[4*n+18] -96*5^(n+6)*Q[2*n+11] +12*(-1)^n*Q[2*n+9] +3*2^(n+10)*P[3*n+15] -640*(12)^(n+6)*P[n+6] -15*(-2)^(n+10)*P[n+5]);
    a[n_]:= a[n]= If[n<2, (280)^n, 70*a[n-1] +P[n+1]*A255497[n]];
    Table[a[n], {n, 0, 30}] (* G. C. Greubel, Sep 22 2021 *)
  • Sage
    @CachedFunction
    def P(n): return lucas_number1(n, 2, -1)
    def Q(n): return lucas_number2(n, 2, -1)
    def A255497(n): return (1/7680)*( 7680*(29)^(n+5) -192*(-5)^(n+6) -30 + Q(4*n+18) -96*5^(n+6)*Q(2*n+11) +12*(-1)^n*Q(2*n+9) +3*2^(n+10)*P(3*n+15) -640*(12)^(n+6)*P(n+6) -15*(-2)^(n+10)*P(n+5) )
    def a(n): return (280)^n if (n<2) else 70*a(n-1) + P(n+1)*A255497(n)
    [a(n) for n in (0..30)] # G. C. Greubel, Sep 20 2021

Formula

From G. C. Greubel, Sep 22 2021: (Start)
a(n) = 70*a(n-1) + A000129(n+1)*A255497(n), a(0) = 1, a(1) = 280.
a(n) = (1/222720)*(435*2^(n+7) + 2320*(-12)^(n+7) - 222720*(70)^(n+6) - 29*2^(n+6)*Q(4*n+22) + 1160*(12)^(n+7)*Q(2*n+13) + 87*(-2)^(n+8)*Q(2*n+11) +
P(5*n+25) - 2784*5^(n+6)*P(3*n+18) + 29*(-1)^n*P(3*n+15) + 7680*(29)^(n+7)*P(n + 7) + 2784*(-5)^(n+7)*P(n+6) - 174*P(n+5)), where P = A000129, Q(n) = A002203.
G.f.: (1 -96*x +11997*x^2 -596862*x^3 +15287055*x^4 -135141972*x^5 +366556867*x^6 -30606125134*x^7 - 254125754944*x^8 -657125309064*x^9 +376990806976*x^10 -2048614425760*x^11 +1171618742400*x^12 +77172576000*x^13 +29064960000*x^14)/((1-2*x)*(1+12*x)*(1-70*x)*(1 -2*x -x^2)*(1 +10*x -25*x^2)*(1 +12*x +4*x^2)*(1 +14*x -x^2)*(1 -58*x -841*x^2)*(1 -68*x +4*x^2)*(1 -70*x -25*x^2)*(1 -72*x +144*x^2)*(1 -82*x -x^2)). (End)

Extensions

Terms a(7) onward added by G. C. Greubel, Sep 22 2021
Showing 1-4 of 4 results.