A255517 Number A(n,k) of rooted identity trees with n nodes and k-colored non-root nodes; square array A(n,k), n>=0, k>=0, read by antidiagonals.
0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 1, 3, 5, 2, 0, 0, 1, 4, 12, 18, 3, 0, 0, 1, 5, 22, 64, 66, 6, 0, 0, 1, 6, 35, 156, 363, 266, 12, 0, 0, 1, 7, 51, 310, 1193, 2214, 1111, 25, 0, 0, 1, 8, 70, 542, 2980, 9748, 14043, 4792, 52, 0, 0, 1, 9, 92, 868, 6273, 30526, 82916, 91857, 21124, 113, 0
Offset: 0
Examples
A(3,2) = 5: o o o o o | | | | / \ 1 1 2 2 1 2 | | | | 1 2 1 2 Square array A(n,k) begins: 0, 0, 0, 0, 0, 0, 0, ... 1, 1, 1, 1, 1, 1, 1, ... 0, 1, 2, 3, 4, 5, 6, ... 0, 1, 5, 12, 22, 35, 51, ... 0, 2, 18, 64, 156, 310, 542, ... 0, 3, 66, 363, 1193, 2980, 6273, ... 0, 6, 266, 2214, 9748, 30526, 77262, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..140, flattened
Crossrefs
Programs
-
Maple
with(numtheory): A:= proc(n, k) option remember; `if`(n<2, n, add(A(n-j, k)*add( k*A(d, k)*d*(-1)^(j/d+1), d=divisors(j)), j=1..n-1)/(n-1)) end: seq(seq(A(n, d-n), n=0..d), d=0..14);
-
Mathematica
A[n_, k_] := A[n, k] = If[n<2, n, Sum[A[n-j, k]*Sum[k*A[d, k]*d*(-1)^(j/d + 1), {d, Divisors[j]}], {j, 1, n-1}]/(n-1)]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Feb 22 2016, after Alois P. Heinz *)
Comments