cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A004111 Number of rooted identity trees with n nodes (rooted trees whose automorphism group is the identity group).

Original entry on oeis.org

0, 1, 1, 1, 2, 3, 6, 12, 25, 52, 113, 247, 548, 1226, 2770, 6299, 14426, 33209, 76851, 178618, 416848, 976296, 2294224, 5407384, 12780394, 30283120, 71924647, 171196956, 408310668, 975662480, 2335443077, 5599508648, 13446130438, 32334837886, 77863375126, 187737500013, 453203435319, 1095295264857, 2649957419351
Offset: 0

Views

Author

Keywords

Comments

The nodes are unlabeled.
There is a natural correspondence between rooted identity trees and finitary sets (sets whose transitive closure is finite); each node represents a set, with the children of that node representing the members of that set. When the set corresponding to an identity tree is written out using braces, there is one set of braces for each node of the tree; thus a(n) is also the number of sets that can be made using n pairs of braces. - Franklin T. Adams-Watters, Oct 25 2011
Shifts left under WEIGH transform. - Franklin T. Adams-Watters, Jan 17 2007
Is this the sequence mentioned in the middle of page 355 of Motzkin (1948)? - N. J. A. Sloane, Jul 04 2015. Answer from David Broadhurst, Apr 06 2022: The answer is No. Motzkin was considering a sequence asymptotic to Catalan(n)/(4*n), namely A006082, which begins 1, 1, 1, 2, 3, 6, 12, 27, ... but he miscalculated and got 1, 1, 1, 2, 3, 6, 12, 25, ... instead! - N. J. A. Sloane, Apr 06 2022

Examples

			The 2 identity trees with 4 nodes are:
     O    O
    / \   |
   O   O  O
       |  |
       O  O
          |
          O
These correspond to the sets {{},{{}}} and {{{{}}}}.
G.f.: x + x^2 + x^3 + 2*x^4 + 3*x^5 + 6*x^6 + 12*x^7 + 25*x^8 + 52*x^9 + ...
		

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 330.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, p. 301 and 562.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 64, Eq. (3.3.15); p. 80, Problem 3.10.
  • D. E. Knuth, Fundamental Algorithms, 3rd Ed., 1997, pp. 386-388.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    import Data.List (genericIndex)
    a004111 = genericIndex a004111_list
    a004111_list = 0 : 1 : f 1 [1] where
       f x zs = y : f (x + 1) (y : zs) where
                y = (sum $ zipWith (*) zs $ map g [1..]) `div` x
       g k = sum $ zipWith (*) (map (((-1) ^) . (+ 1)) $ reverse divs)
                               (zipWith (*) divs $ map a004111 divs)
                               where divs = a027750_row k
    -- Reinhard Zumkeller, Apr 29 2014
    
  • Maple
    A004111 := proc(n)
            spec := [ A, {A=Prod(Z,PowerSet(A))} ]:
            combstruct[count](spec, size=n) ;
    end proc:
    # second Maple program:
    with(numtheory):
    a:= proc(n) a(n):= `if`(n<2, n, add(a(n-k)*add(a(d)*d*
           (-1)^(k/d+1), d=divisors(k)), k=1..n-1)/(n-1))
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Jul 15 2014
  • Mathematica
    s[ n_, k_ ] := s[ n, k ]=a[ n+1-k ]+If[ n<2k, 0, -s[ n-k, k ] ]; a[ 1 ]=1; a[ n_ ] := a[ n ]=Sum[ a[ i ]s[ n-1, i ]i, {i, 1, n-1} ]/(n-1); Table[ a[ i ], {i, 1, 30} ] (* Robert A. Russell *)
    a[ n_] := If[ n < 2, Boole[n == 1], Nest[ CoefficientList[ Normal[ Times @@ (Table[1 + x^k, {k, Length@#}]^#) + x O[x]^Length@#], x] &, {}, n - 1][[n]]]; (* Michael Somos, Jul 10 2014 *)
    a[n_] := a[n] = Sum[a[n-k]*Sum[a[d]*d*(-1)^(k/d+1),{d, Divisors[k]}], {k, 1, n-1}]/(n-1); a[0]=0; a[1]=1; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 02 2015 *)
  • PARI
    N=66;  A=vector(N+1, j, 1);
    for (n=1, N, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, (-1)^(k/d+1) * d * A[d]) * A[n-k+1] ) );
    concat([0], A)
    \\ Joerg Arndt, Jul 10 2014

Formula

Recurrence: a(n+1) = (1/n) * Sum_{k=1..n} ( Sum_{d|k} (-1)^(k/d+1) d*a(d) ) * a(n-k+1). - Mitchell Harris, Dec 02 2004
G.f. satisfies A(x) = x*exp(A(x) - A(x^2)/2 + A(x^3)/3 - A(x^4)/4 + ...). [Harary and Prins]
Also A(x) = Sum_{n >= 1} a(n)*x^n = x * Product_{n >= 1} (1+x^n)^a(n).
a(n) ~ c * d^n / n^(3/2), where d = A246169 = 2.51754035263200389079535..., c = 0.3625364233974198712298411097408713812865256408189512533230825639621448038... . - Vaclav Kotesovec, Aug 22 2014, updated Dec 26 2020

A242249 Number A(n,k) of rooted trees with n nodes and k-colored non-root nodes; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 2, 0, 0, 1, 3, 7, 4, 0, 0, 1, 4, 15, 26, 9, 0, 0, 1, 5, 26, 82, 107, 20, 0, 0, 1, 6, 40, 188, 495, 458, 48, 0, 0, 1, 7, 57, 360, 1499, 3144, 2058, 115, 0, 0, 1, 8, 77, 614, 3570, 12628, 20875, 9498, 286, 0, 0, 1, 9, 100, 966, 7284, 37476, 111064, 142773, 44947, 719, 0
Offset: 0

Views

Author

Alois P. Heinz, May 09 2014

Keywords

Comments

From Vaclav Kotesovec, Aug 26 2014: (Start)
Column k > 0 is asymptotic to c(k) * d(k)^n / n^(3/2), where constants c(k) and d(k) are dependent only on k. Conjecture: d(k) ~ k * exp(1). Numerically:
d(1) = 2.9557652856519949747148175... (A051491)
d(2) = 5.6465426162329497128927135... (A245870)
d(3) = 8.3560268792959953682760695...
d(4) = 11.0699628777593263124193026...
d(5) = 13.7856511100846851989303249...
d(6) = 16.5022088446930015657112211...
d(7) = 19.2192613290638657575973462...
d(8) = 21.9366222112987115910888213...
d(9) = 24.6541883249893084812976812...
d(10) = 27.3718979186642404090999595...
d(100) = 272.0126359583480733207362718...
d(101) = 274.7309127032967881125015217...
d(200) = 543.8405620978790523837823296...
d(201) = 546.5588426492458787468860222...
d(101)-d(100) = 2.718276744...
d(201)-d(200) = 2.718280551...
(End)

Examples

			Square array A(n,k) begins:
  0,  0,    0,     0,      0,      0,       0,       0, ...
  1,  1,    1,     1,      1,      1,       1,       1, ...
  0,  1,    2,     3,      4,      5,       6,       7, ...
  0,  2,    7,    15,     26,     40,      57,      77, ...
  0,  4,   26,    82,    188,    360,     614,     966, ...
  0,  9,  107,   495,   1499,   3570,    7284,   13342, ...
  0, 20,  458,  3144,  12628,  37476,   91566,  195384, ...
  0, 48, 2058, 20875, 111064, 410490, 1200705, 2984142, ...
		

Crossrefs

Rows n=0-3 give: A000004, A000012, A001477, A005449.
Lower diagonal gives A242375.

Programs

  • Maple
    with(numtheory):
    A:= proc(n, k) option remember; `if`(n<2, n, (add(add(d*
          A(d, k), d=divisors(j))*A(n-j, k)*k, j=1..n-1))/(n-1))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    nn = 10; t[x_] := Sum[a[n] x^n, {n, 1, nn}]; Transpose[ Table[Flatten[ sol = SolveAlways[ 0 == Series[ t[x] - x Product[1/(1 - x^i)^(n a[i]), {i, 1, nn}], {x, 0, nn}], x]; Flatten[{0, Table[a[n], {n, 1, nn}]}] /. sol], {n, 0, nn}]] // Grid (* Geoffrey Critzer, Nov 11 2014 *)
    A[n_, k_] := A[n, k] = If[n<2, n, Sum[Sum[d*A[d, k], {d, Divisors[j]}] *A[n-j, k]*k, {j, 1, n-1}]/(n-1)]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Dec 04 2014, translated from Maple *)
  • PARI
    \\ ColGf gives column generating function
    ColGf(N,k) = {my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = k/n * sum(i=1, n, sumdiv(i, d, d*A[d]) * A[n-i+1] ) ); x*Ser(A)}
    Mat(vector(8, k, concat(0, Col(ColGf(7, k-1))))) \\ Andrew Howroyd, May 12 2018

Formula

G.f. for column k: x*Product_{n>=1} 1/(1 - x^n)^(k*A(n,k)). - Geoffrey Critzer, Nov 13 2014

A005753 Number of rooted identity matched trees with n nodes.

Original entry on oeis.org

1, 2, 5, 18, 66, 266, 1111, 4792, 21124, 94888, 432415, 1994828, 9296712, 43706722, 207030398, 987130456, 4733961435, 22819241034, 110500644857, 537295738556, 2622248720234, 12840953621208, 63074566121245, 310693364823376, 1534374047239554, 7595642577152762
Offset: 1

Views

Author

Keywords

Comments

Also number of rooted identity trees with n nodes and 2-colored non-root nodes. - Christian G. Bower, Apr 15 1998

Examples

			G.f.: A(x) = x + 2*x^2 + 5*x^3 + 18*x^4 + 66*x^5 + 266*x^6 + ...
where A(x) = x*(1+x)^2*(1+x^2)^4*(1+x^3)^10*(1+x^4)^36*(1+x^5)^132*... (the exponents are A038077(n), n>=1).
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=2 of A255517.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(2*a(i), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> `if`(n=1, 1, b((n-1)$2)):
    seq(a(n), n=1..40);  # Alois P. Heinz, Aug 01 2013
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[Binomial[2*a[i], j]*b[n-i*j, i-1], {j, 0, n/i}]]]; a[n_] := If[n == 1, 1, b[n-1, n-1]]; Table[a[n] // FullSimplify, {n, 1, 30}] (* Jean-François Alcover, Mar 17 2014, after Alois P. Heinz *)
  • PARI
    {a(n)=polcoeff(x*prod(k=1, n-1, (1+x^k+x*O(x^n))^(2*a(k))), n)} /* Paul D. Hanna */

Formula

G.f.: x*Product_{n>=1} (1 + x^n)^(2*a(n)) = Sum_{n>=1} a(n)*x^n. - Paul D. Hanna, Dec 31 2011
a(n) ~ c * d^n / n^(3/2), where d = A246312 = 5.249032491228170579164952216..., c = 0.192066288645200371237879149260484794708740197522264442948290580404909605849... - Vaclav Kotesovec, Aug 25 2014, updated Dec 26 2020
G.f. A(x) satisfies: A(x) = x*exp(2*Sum_{k>=1} (-1)^(k+1)*A(x^k)/k). - Ilya Gutkovskiy, Apr 13 2019

A319254 Array read by antidiagonals: T(n,k) is the number of series-reduced rooted trees with n leaves of k colors.

Original entry on oeis.org

1, 2, 1, 3, 3, 2, 4, 6, 10, 5, 5, 10, 28, 40, 12, 6, 15, 60, 156, 170, 33, 7, 21, 110, 430, 948, 785, 90, 8, 28, 182, 965, 3396, 6206, 3770, 261, 9, 36, 280, 1890, 9376, 28818, 42504, 18805, 766, 10, 45, 408, 3360, 21798, 97775, 256172, 301548, 96180, 2312
Offset: 1

Views

Author

Andrew Howroyd, Sep 15 2018

Keywords

Comments

Not all colors need to be used.
See table 2.3 in the Johnson reference.

Examples

			Array begins:
==================================================================
n\k|   1     2       3        4         5         6          7
---+--------------------------------------------------------------
1  |   1     2       3        4         5         6          7 ...
2  |   1     3       6       10        15        21         28 ...
3  |   2    10      28       60       110       182        280 ...
4  |   5    40     156      430       965      1890       3360 ...
5  |  12   170     948     3396      9376     21798      44856 ...
6  |  33   785    6206    28818     97775    269675     642124 ...
7  |  90  3770   42504   256172   1068450   3496326    9632960 ...
8  | 261 18805  301548  2357138  12081605  46897359  149491104 ...
9  | 766 96180 2195100 22253672 140160650 645338444 2379859608 ...
...
		

Crossrefs

Columns 1..5 are A000669, A050381, A220823, A220824, A220825.
Main diagonal is A319369.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(A(i, k)+j-1, j)*b(n-i*j, i-1, k), j=0..n/i)))
        end:
    A:= (n, k)-> `if`(n<2, n*k, b(n, n-1, k)):
    seq(seq(A(n, 1+d-n), n=1..d), d=1..12);  # Alois P. Heinz, Sep 17 2018
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[A[i, k] + j - 1, j] b[n - i j, i - 1, k], {j, 0, n/i}]]];
    A[n_, k_] := If[n < 2, n k, b[n, n - 1, k]];
    Table[A[n, 1 + d - n], {d, 1, 12}, {n, 1, d}] // Flatten (* Jean-François Alcover, Sep 11 2019, after Alois P. Heinz *)
  • PARI
    \\ here R(n,k) gives k'th column as a vector.
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    R(n,k)={my(v=[k]); for(n=2, n, v=concat(v, EulerT(concat(v,[0]))[n])); v}
    {my(T=Mat(vector(8, k, R(8, k)~))); for(n=1, #T~, print(T[n,]))} \\ Andrew Howroyd, Sep 15 2018

A052757 Number of rooted identity trees with n nodes and 3-colored non-root nodes.

Original entry on oeis.org

0, 1, 3, 12, 64, 363, 2214, 14043, 91857, 614676, 4189254, 28974915, 202870938, 1435094800, 10241197917, 73639001172, 533004547453, 3880381334415, 28395656513145, 208748382089131, 1540935621796941, 11417266889312313, 84880193073070819, 632976019285857201
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Previous name was: A simple grammar.

Examples

			a(3) = 12:
o  o  o  o  o  o  o  o  o    o      o      o
|  |  |  |  |  |  |  |  |   / \    / \    / \
1  1  1  2  2  2  3  3  3  1   2  1   3  2   3
|  |  |  |  |  |  |  |  |
1  2  3  1  2  3  1  2  3  - _Alois P. Heinz_, Feb 24 2015
		

Crossrefs

Cf. A038079.
Column k=3 of A255517.

Programs

  • Maple
    spec := [S,{S=Prod(B,B,B,Z),B=PowerSet(S)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);

Formula

a(n) ~ c * d^n / n^(3/2), where d = 7.969494030514425004826375511986491746399264355846412073489715938424..., c = 0.12982932099206082951153936270704832022771078... . - Vaclav Kotesovec, Feb 24 2015
From Ilya Gutkovskiy, Apr 13 2019: (Start)
G.f. A(x) satisfies: A(x) = x*exp(3*Sum_{k>=1} (-1)^(k+1)*A(x^k)/k).
G.f.: A(x) = Sum_{n>=1} a(n)*x^n = x * Product_{n>=1} (1 + x^n)^(3*a(n)). (End)

Extensions

New name from Vaclav Kotesovec, Feb 24 2015

A319376 Triangle read by rows: T(n,k) is the number of lone-child-avoiding rooted trees with n leaves of exactly k colors.

Original entry on oeis.org

1, 1, 1, 2, 6, 4, 5, 30, 51, 26, 12, 146, 474, 576, 236, 33, 719, 3950, 8572, 8060, 2752, 90, 3590, 31464, 108416, 175380, 134136, 39208, 261, 18283, 245916, 1262732, 3124650, 4014348, 2584568, 660032, 766, 94648, 1908858, 14047288, 49885320, 95715728, 101799712, 56555904, 12818912
Offset: 1

Views

Author

Andrew Howroyd, Sep 17 2018

Keywords

Comments

Lone-child-avoiding rooted trees are also called planted series-reduced trees in some other sequences.

Examples

			Triangle begins:
    1;
    1,     1;
    2,     6,      4;
    5,    30,     51,      26;
   12,   146,    474,     576,     236;
   33,   719,   3950,    8572,    8060,   2752;
   90,  3590,  31464,  108416,  175380,  134136,   39208;
  261, 18283, 245916, 1262732, 3124650, 4014348, 2584568, 660032;
  ...
From _Gus Wiseman_, Dec 31 2020: (Start)
The 12 trees counted by row n = 3:
  (111)    (112)    (123)
  (1(11))  (122)    (1(23))
           (1(12))  (2(13))
           (1(22))  (3(12))
           (2(11))
           (2(12))
(End)
		

Crossrefs

Columns k=1..2 are A000669, A319377.
Main diagonal is A000311.
Row sums are A316651.
The unlabeled version, counting inequivalent leaf-colorings of lone-child-avoiding rooted trees, is A330465.
Lone-child-avoiding rooted trees are counted by A001678 (shifted left once).
Labeled lone-child-avoiding rooted trees are counted by A060356.
Matula-Goebel numbers of lone-child-avoiding rooted trees are A291636.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(A(i, k)+j-1, j)*b(n-i*j, i-1, k), j=0..n/i)))
        end:
    A:= (n, k)-> `if`(n<2, n*k, b(n, n-1, k)):
    T:= (n, k)-> add(A(n, k-j)*(-1)^j*binomial(k, j), j=0..k-1):
    seq(seq(T(n, k), k=1..n), n=1..10);  # Alois P. Heinz, Sep 18 2018
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[A[i, k] + j - 1, j] b[n - i j, i - 1, k], {j, 0, n/i}]]];
    A[n_, k_] := If[n < 2, n k, b[n, n - 1, k]];
    T[n_, k_] := Sum[(-1)^(k - i)*Binomial[k, i]*A[n, i], {i, 1, k}];
    Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 24 2019, after Alois P. Heinz *)
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    mtot[m_]:=Prepend[Join@@Table[Tuples[mtot/@p],{p,Select[mps[m],1Gus Wiseman, Dec 31 2020 *)
  • PARI
    \\ here R(n,k) is k-th column of A319254.
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    R(n, k)={my(v=[k]); for(n=2, n, v=concat(v, EulerT(concat(v, [0]))[n])); v}
    M(n)={my(v=vector(n, k, R(n,k)~)); Mat(vector(n, k, sum(i=1, k, (-1)^(k-i)*binomial(k,i)*v[i])))}
    {my(T=M(10)); for(n=1, #T~, print(T[n, ][1..n]))}

Formula

T(n,k) = Sum_{i=1..k} (-1)^(k-i)*binomial(k,i)*A319254(n,i).
Sum_{k=1..n} k * T(n,k) = A326396(n). - Alois P. Heinz, Sep 11 2019

A256068 Number T(n,k) of rooted identity trees with n nodes and colored non-root nodes using exactly k colors; triangle T(n,k), n>=1, 0<=k<=n-1, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 2, 14, 16, 0, 3, 60, 174, 125, 0, 6, 254, 1434, 2464, 1296, 0, 12, 1087, 10746, 33362, 40455, 16807, 0, 25, 4742, 77556, 388312, 816535, 763104, 262144, 0, 52, 21020, 551460, 4191916, 13617210, 21501684, 16328620, 4782969
Offset: 1

Views

Author

Alois P. Heinz, Mar 13 2015

Keywords

Examples

			T(4,2) = 14:
:   0   0   0   0   0   0     0       0
:   |   |   |   |   |   |     |       |
:   1   1   2   2   2   1     1       2
:   |   |   |   |   |   |    / \     / \
:   1   2   1   2   1   2   1   2   1   2
:   |   |   |   |   |   |
:   2   1   1   1   2   1
:
:     0      0      0      0      0      0
:    / \    / \    / \    / \    / \    / \
:   1   1  2   1  1   2  2   2  1   2  2   1
:   |      |      |      |      |      |
:   2      1      1      1      2      2
Triangle T(n,k) begins:
  1;
  0,  1;
  0,  1,    3;
  0,  2,   14,    16;
  0,  3,   60,   174,    125;
  0,  6,  254,  1434,   2464,   1296;
  0, 12, 1087, 10746,  33362,  40455,  16807;
  0, 25, 4742, 77556, 388312, 816535, 763104, 262144;
  ...
		

Crossrefs

Columns k=0-1 give: A063524 (for n>0), A004111 (for n>1):
Main diagonal gives: A000272 (for n>0).
Row sums give A319220(n-1).
T(2n+1,n) gives A309996.

Programs

  • Maple
    with(numtheory):
    A:= proc(n, k) option remember; `if`(n<2, n, add(A(n-j, k)*add(
          k*A(d, k)*d*(-1)^(j/d+1), d=divisors(j)), j=1..n-1)/(n-1))
        end:
    T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k):
    seq(seq(T(n, k), k=0..n-1), n=1..10);
  • Mathematica
    A[n_, k_] := A[n, k] = If[n < 2, n, Sum[A[n - j, k] Sum[k A[d, k] d * (-1)^(j/d + 1), {d, Divisors[j]}], {j, 1, n - 1}]/(n - 1)];
    T[n_, k_] := Sum[A[n, k - i] (-1)^i Binomial[k, i], {i, 0, k}];
    Table[T[n, k], {n, 10}, {k, 0, n - 1}] // Flatten (* Jean-François Alcover, May 29 2020, after Maple *)

Formula

T(n,k) = Sum_{i=0..k} (-1)^i * C(k,i) * A255517(n).

A038080 Number of identity trees with 3-colored nodes.

Original entry on oeis.org

1, 3, 3, 9, 39, 189, 981, 5490, 31674, 189954, 1170126, 7382745, 47494197, 310712808, 2061987642, 13855192866, 94113385437, 645424668666, 4464027720900, 31110200069511, 218292811705458, 1541172223659249
Offset: 0

Views

Author

Christian G. Bower, Jan 04 1999

Keywords

Crossrefs

Formula

G.f.: B(x) - B^2(x)/2 - B(x^2)/2, where B(x) is g.f. for A038079.
a(n) ~ c * d^n / n^(5/2), where d = 7.969494030514425004826375511986491746399264355846412073489715938... and c = 0.3712461766927875417276388215355520756010680416348018056669... - Vaclav Kotesovec, Dec 26 2020

A052772 Number of rooted identity trees with n nodes and 4-colored non-root nodes.

Original entry on oeis.org

0, 1, 4, 22, 156, 1193, 9748, 82916, 727088, 6524084, 59620732, 552970626, 5191935808, 49252903050, 471358286352, 4545310993994, 44121116086052, 430777978197156, 4227634212037728, 41680927531643928, 412638233333973820, 4100336181515969163, 40882494461218775272
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Previous name was: A simple grammar.

Crossrefs

Column k=4 of A255517.

Programs

  • Maple
    spec := [S,{S=Prod(Z,B,B,B,B),B=PowerSet(S)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);

Formula

a(n) ~ c * d^n / n^(3/2), where d = 10.68849275496965245845204879846824293047921245695819153804780100052532088..., c = 0.097992887955331161579155538221616838965194192139... . - Vaclav Kotesovec, Feb 24 2015
From Ilya Gutkovskiy, Apr 13 2019: (Start)
G.f. A(x) satisfies: A(x) = x*exp(4*Sum_{k>=1} (-1)^(k+1)*A(x^k)/k).
G.f.: A(x) = Sum_{n>=1} a(n)*x^n = x * Product_{n>=1} (1 + x^n)^(4*a(n)). (End)

Extensions

New name from Vaclav Kotesovec, Feb 24 2015

A255523 Number of rooted identity trees with n n-colored non-root nodes.

Original entry on oeis.org

1, 1, 5, 64, 1193, 30526, 991264, 39156244, 1824927697, 98125181461, 5983042467096, 408095177801851, 30797863537552547, 2548357838769171131, 229445851718471852031, 22334471403618839348901, 2337414940442888593612961, 261737726746663069945238177
Offset: 0

Views

Author

Alois P. Heinz, Feb 24 2015

Keywords

Examples

			a(2) = 5:
  o    o    o    o      o
  |    |    |    |     / \
  1    1    2    2    1   2
  |    |    |    |
  1    2    1    2
		

Crossrefs

A diagonal of A255517.
Cf. A242375.

Programs

  • Maple
    with(numtheory):
    A:= proc(n, k) option remember; `if`(n<2, n, add(A(n-j, k)*add(
          k*A(d, k)*d*(-1)^(j/d+1), d=divisors(j)), j=1..n-1)/(n-1))
        end:
    a:= n-> A(n+1, n):
    seq(a(n), n=0..25);
  • Mathematica
    A[n_, k_] := A[n, k] = If[n < 2, n, Sum[A[n-j, k]*Sum[
         k*A[d, k]*d*(-1)^(j/d+1), {d, Divisors[j]}], {j, 1, n-1}]/(n-1)];
    a[n_] := A[n+1, n];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 29 2022, after Alois P. Heinz *)
Showing 1-10 of 16 results. Next