cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A255517 Number A(n,k) of rooted identity trees with n nodes and k-colored non-root nodes; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 1, 3, 5, 2, 0, 0, 1, 4, 12, 18, 3, 0, 0, 1, 5, 22, 64, 66, 6, 0, 0, 1, 6, 35, 156, 363, 266, 12, 0, 0, 1, 7, 51, 310, 1193, 2214, 1111, 25, 0, 0, 1, 8, 70, 542, 2980, 9748, 14043, 4792, 52, 0, 0, 1, 9, 92, 868, 6273, 30526, 82916, 91857, 21124, 113, 0
Offset: 0

Views

Author

Alois P. Heinz, Feb 24 2015

Keywords

Comments

From Vaclav Kotesovec, Feb 24 2015: (Start)
k Limit n->infinity A(n,k)^(1/n)
1 2.517540352632003890795354598463447277335981266803... = A246169
2 5.249032491228170579164952216184309265343086337648... = A246312
3 7.969494030514425004826375511986491746399264355846...
4 10.688492754969652458452048798468242930479212456958...
5 13.407087472537747579787047072702638639945914705837...
6 16.125529360448558670505097146631763969697822205298...
7 18.843901825822305757579605844910623225182677164912...
8 21.562238702430237066018783115405680041128676137631...
9 24.280555694806692616578932533497629224907619468796...
10 26.998860838916733933849490675388336975888308433826...
100 271.64425688361559470587959030374804709717287744789...
Conjecture: For big k the limit asymptotically approaches k*exp(1).
(End)

Examples

			A(3,2) = 5:
  o    o    o    o      o
  |    |    |    |     / \
  1    1    2    2    1   2
  |    |    |    |
  1    2    1    2
Square array A(n,k) begins:
  0,  0,   0,    0,    0,     0,     0, ...
  1,  1,   1,    1,    1,     1,     1, ...
  0,  1,   2,    3,    4,     5,     6, ...
  0,  1,   5,   12,   22,    35,    51, ...
  0,  2,  18,   64,  156,   310,   542, ...
  0,  3,  66,  363, 1193,  2980,  6273, ...
  0,  6, 266, 2214, 9748, 30526, 77262, ...
		

Crossrefs

Rows n=0-4 give: A000004, A000012, A001477, A000326, 2*A051662(k-1) for k>0.
Lower diagonal gives A255523.

Programs

  • Maple
    with(numtheory):
    A:= proc(n, k) option remember; `if`(n<2, n, add(A(n-j, k)*add(
          k*A(d, k)*d*(-1)^(j/d+1), d=divisors(j)), j=1..n-1)/(n-1))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    A[n_, k_] := A[n, k] = If[n<2, n, Sum[A[n-j, k]*Sum[k*A[d, k]*d*(-1)^(j/d + 1), {d, Divisors[j]}], {j, 1, n-1}]/(n-1)]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Feb 22 2016, after Alois P. Heinz *)

A005754 Number of planted identity matched trees with n nodes.

Original entry on oeis.org

1, 1, 2, 7, 24, 95, 388, 1650, 7183, 31965, 144502, 662241, 3068942, 14358678, 67729973, 321759461, 1538076291, 7392775328, 35707198905, 173221206284, 843634142771, 4123376617009, 20218897206392, 99436453714990, 490355165178472, 2424146632435852
Offset: 1

Views

Author

Keywords

Comments

Number of rooted identity trees with n nodes and edges not attached to root are 2-colored or oriented. - Christian G. Bower, Dec 15 1999

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(2*b((i-1)$2), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    g:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(b((i-1)$2), j)*g(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> g((n-1)$2):
    seq(a(n), n=1..30);  # Alois P. Heinz, Aug 01 2013
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[2*b[i-1, i-1], j]*b[n-i*j, i-1], {j, 0, n/i}]]]; g[n_, i_] := g[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[b[i-1, i-1], j]*g[n-i*j, i-1], {j, 0, n/i}]]]; a[n_] := g[n-1, n-1]; Table[a[n], {n, 1, 30}] // FullSimplify (* Jean-François Alcover, Dec 02 2013, translated from Alois P. Heinz's Maple program *)

Formula

a(n+1) is Weigh transform of A005753. - Christian G. Bower, Dec 15 1999
a(n) ~ c * d^n / n^(3/2), where d = A246312 = 5.2490324912281705791649522..., c = 0.05927840588836202377824646... . - Vaclav Kotesovec, Aug 25 2014
G.f. A(x) satisfies: A(x) = x * exp( A(x)^2/x - A(x^2)^2/(2*x^2) + A(x^3)^2/(3*x^3) - A(x^4)^2/(4*x^4) + ... ). - Ilya Gutkovskiy, May 26 2023

Extensions

More terms from Christian G. Bower, Dec 15 1999

A246312 Decimal expansion of a constant related to identity matched trees.

Original entry on oeis.org

5, 2, 4, 9, 0, 3, 2, 4, 9, 1, 2, 2, 8, 1, 7, 0, 5, 7, 9, 1, 6, 4, 9, 5, 2, 2, 1, 6, 1, 8, 4, 3, 0, 9, 2, 6, 5, 3, 4, 3, 0, 8, 6, 3, 3, 7, 6, 4, 8, 7, 3, 6, 5, 0, 3, 2, 0, 2, 2, 3, 3, 1, 8, 6, 0, 5, 9, 5, 8, 5, 5, 6, 5, 2, 6, 4, 0, 2, 8, 7, 7, 5, 8, 7, 0, 4, 5, 7, 4, 4, 0, 9, 9, 4, 5, 1, 8, 6, 5, 4, 7, 3, 8, 7, 6
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 25 2014

Keywords

Examples

			5.249032491228170579164952216184309265343086337648736503202233186059585565...
		

Crossrefs

Formula

Equals lim n -> infinity A005753(n)^(1/n).
Equals lim n -> infinity A005754(n)^(1/n).
Equals lim n -> infinity A005755(n)^(1/n).
Equals lim n -> infinity A102755(n)^(1/n).
Equals lim n -> infinity A038078(n)^(1/n).

Extensions

More terms from Vaclav Kotesovec, Sep 06 2014, Feb 24 2015 and Dec 26 2020

A038077 Number of rooted identity trees with 2-colored nodes.

Original entry on oeis.org

2, 4, 10, 36, 132, 532, 2222, 9584, 42248, 189776, 864830, 3989656, 18593424, 87413444, 414060796, 1974260912, 9467922870, 45638482068, 221001289714, 1074591477112, 5244497440468, 25681907242416, 126149132242490, 621386729646752, 3068748094479108
Offset: 1

Views

Author

Christian G. Bower, Jan 04 1999

Keywords

Comments

Shifts left and halves under Weigh transform.

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(a(i), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> `if`(n=1, 2, 2*b((n-1)$2)):
    seq(a(n), n=1..40); # Alois P. Heinz, May 20 2013
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[Binomial[a[i], j]*b[n - i*j, i-1], {j, 0, n/i}]]];
    a[n_] := If[n==1, 2, 2*b[n-1, n-1]];
    Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Mar 01 2016, after Alois P. Heinz *)

Formula

a(n) = 2 * A005753(n).

A102755 Number of asymmetric (or identity) oriented trees with n nodes.

Original entry on oeis.org

1, 1, 1, 4, 10, 37, 135, 522, 2060, 8430, 35115, 149286, 644456, 2821835, 12503878, 56001856, 253174451, 1154179790, 5301178673, 24513058220, 114042743290, 533510321377, 2508491383101, 11849321038092, 56211286929146, 267707017974770, 1279602152054934
Offset: 1

Views

Author

Vladeta Jovovic, Feb 10 2005

Keywords

Crossrefs

Cf. A005753 = number of asymmetric (or identity) rooted oriented trees with n nodes.
Cf. A246312.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(2*b(i-1$2), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> b(n-1$2)-add(b(j-1$2)*b(n-j-1$2), j=1..n-1):
    seq(a(n), n=1..35);  # Alois P. Heinz, Aug 01 2013
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[Binomial[2*b[i-1, i-1], j]*b[n - i*j, i-1], {j, 0, n/i}]]] // FullSimplify; a[n_] := b[n-1, n-1] - Sum[b[j-1, j-1]*b[n-j-1, n-j-1], {j, 1, n-1}]; Table[a[n], {n, 1, 35}] (* Jean-François Alcover, Feb 24 2015, after Alois P. Heinz *)

Formula

G.f.: B(x)-B(x)^2, where B(x) is g.f. for A005753.
a(n) ~ c * d^n / n^(5/2), where d = A246312 = 5.249032491228170579164952216..., c = 0.17807103914078424643862998... . - Vaclav Kotesovec, Aug 25 2014

A005755 Number of identity matched trees with n nodes.

Original entry on oeis.org

0, 0, 0, 1, 4, 16, 64, 252, 1018, 4182, 17510, 74510, 322034, 1410362, 6251114, 27998532, 126583634, 577079333, 2650573354, 12256481666, 57021299394, 266754944481, 1254245360430, 5924659521632, 28105641930102, 133853504339029, 639801068848128
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    with(numtheory): b2:= proc(n) option remember; local m; `if`(n=1, 1, 2/(n-1) *add(b2(m) *add((-1)^((n-m)/d+1) *d*b2(d), d=divisors(n-m)), m=1..n-1)) end: c2:= proc(n) option remember; local m; `if`(n=1, 1, 1/(n-1) *add(c2(m) *add((-1)^((n-m)/d+1) *d*b2(d), d=divisors(n-m)), m=1..n-1)) end: a2:= n-> (b2(n) -add(b2(m) *b2(n-m), m=1..n-1) -`if`(irem(n, 2)=0, b2(n/2), c2((n+1)/2)))/2: seq(a2(n), n=1..30); # Alois P. Heinz, Aug 04 2009
  • Mathematica
    b2[n_] := b2[n] = If [n == 1, 1, 2/(n-1)*Sum[b2[m]*Sum[(-1)^((n-m)/d+1)*d*b2[d], {d, Divisors[n-m]}], {m, 1, n-1}]]; c2[n_] := c2[n] = If [n == 1, 1, 1/(n-1)*Sum[c2[m]*Sum[(-1)^((n-m)/d+1)*d*b2[d], {d, Divisors[n-m]}], {m, 1, n-1}]]; a2[n_] := (b2[n] - Sum[b2[m]*b2[n-m], {m, 1, n-1}] - If[Mod[n, 2] == 0, b2[n/2], c2[(n+1)/2]])/2; Table[a2[n], {n, 1, 30}] (* Jean-François Alcover, Mar 17 2014, after Alois P. Heinz *)

Formula

a(n) ~ c * d^n / n^(5/2), where d = A246312 = 5.2490324912281705791649522..., c = 0.089035519570392123219315... . - Vaclav Kotesovec, Aug 25 2014

Extensions

More terms from Alois P. Heinz, Aug 04 2009

A345243 G.f. A(x) satisfies: A(x) = x + x^2 * exp(2 * Sum_{k>=1} (-1)^(k+1) * A(x^k) / k).

Original entry on oeis.org

1, 1, 2, 3, 8, 17, 42, 107, 272, 719, 1914, 5163, 14088, 38733, 107370, 299511, 840372, 2370020, 6714316, 19100096, 54534696, 156230943, 448942998, 1293692305, 3737568960, 10823759093, 31413810702, 91358248179, 266193726712, 776989772307, 2271695757714, 6652074198889
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 11 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 32; A[] = 0; Do[A[x] = x + x^2 Exp[2 Sum[(-1)^(k + 1) A[x^k]/k, {k, 1, nmax}]] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] // Rest
    a[1] = a[2] = 1; a[n_] := a[n] = (2/(n - 2)) Sum[Sum[(-1)^(k/d + 1) d a[d], {d, Divisors[k]}] a[n - k], {k, 1, n - 2}]; Table[a[n], {n, 1, 32}]

Formula

G.f.: x + x^2 * Product_{n>=1} (1 + x^n)^(2*a(n)).
a(n+2) = (2/n) * Sum_{k=1..n} ( Sum_{d|k} (-1)^(k/d+1) * d * a(d) ) * a(n-k+2).

A363474 G.f. satisfies A(x) = exp( 2 * Sum_{k>=1} (-1)^(k+1) * A(-x^k) * x^k/k ).

Original entry on oeis.org

1, 2, -3, -14, 22, 138, -213, -1536, 2474, 18928, -31451, -248992, 420804, 3416514, -5844716, -48349920, 83503128, 700674606, -1219159874, -10345673158, 18109290380, 155082913608, -272798814028, -2353889042848, 4157686512816, 36104006239798
Offset: 0

Views

Author

Seiichi Manyama, Jun 03 2023

Keywords

Crossrefs

Programs

  • PARI
    seq(n) = my(A=1); for(i=1, n, A=exp(2*sum(k=1, i, (-1)^(k+1)*subst(A, x, -x^k)*x^k/k)+x*O(x^n))); Vec(A);

Formula

A(x) = Sum_{k>=0} a(k) * x^k = Product_{k>=0} (1+x^(k+1))^(2 * (-1)^k * a(k)).
a(0) = 1; a(n) = (2/n) * Sum_{k=1..n} ( Sum_{d|k} d * (-1)^(d+k/d) * a(d-1) ) * a(n-k).

A345878 G.f. A(x) satisfies: A(x) = x / exp(2 * Sum_{k>=1} A(x^k) / k).

Original entry on oeis.org

1, -2, 5, -18, 70, -282, 1179, -5104, 22634, -102128, 467637, -2168208, 10157664, -48005858, 228607728, -1095885048, 5284044080, -25609804110, 124693451466, -609641464746, 2991742731876, -14731354000792, 72761153346680, -360397156557696, 1789733084330806, -8909067981051118
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 28 2021

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=1, 1, -2*add(a(n-k)*add(
          d*a(d), d=numtheory[divisors](k)), k=1..n-1)/(n-1))
        end:
    seq(a(n), n=1..26); # Alois P. Heinz, Jun 28 2021
  • Mathematica
    nmax = 26; A[] = 0; Do[A[x] = x/Exp[2 Sum[A[x^k]/k, {k, 1, nmax}]] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] // Rest
    a[1] = 1; a[n_] := a[n] = -(2/(n - 1)) Sum[Sum[d a[d], {d, Divisors[k]}] a[n - k], {k, 1, n - 1}]; Table[a[n], {n, 1, 26}]

Formula

G.f.: x * Product_{n>=1} (1 - x^n)^(2*a(n)).
a(n+1) = -(2/n) * Sum_{k=1..n} ( Sum_{d|k} d * a(d) ) * a(n-k+1).

A345884 G.f. A(x) satisfies: A(x) = x * exp(2 * Sum_{k>=1} (-1)^k * A(x^k) / k).

Original entry on oeis.org

1, -2, 7, -26, 103, -442, 1982, -9122, 42985, -206526, 1007322, -4974066, 24819268, -124949782, 633882799, -3237261340, 16629986395, -85873762466, 445491479309, -2320717519612, 12134813554225, -63667883444468, 335083404759136, -1768545061282712, 9358571746569760
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 28 2021

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=1, 1, 2*add(a(n-k)*add(d*a(d)
           *(-1)^(k/d), d=numtheory[divisors](k)), k=1..n-1)/(n-1))
        end:
    seq(a(n), n=1..25);  # Alois P. Heinz, Jun 28 2021
  • Mathematica
    nmax = 25; A[] = 0; Do[A[x] = x Exp[2 Sum[(-1)^k A[x^k]/k, {k, 1, nmax}]] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] // Rest
    a[1] = 1; a[n_] := a[n] = (2/(n - 1)) Sum[Sum[(-1)^(k/d) d a[d], {d, Divisors[k]}] a[n - k], {k, 1, n - 1}]; Table[a[n], {n, 1, 25}]

Formula

G.f.: x / Product_{n>=1} (1 + x^n)^(2*a(n)).
a(n+1) = (2/n) * Sum_{k=1..n} ( Sum_{d|k} (-1)^(k/d) * d * a(d) ) * a(n-k+1).
Showing 1-10 of 11 results. Next