cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A255517 Number A(n,k) of rooted identity trees with n nodes and k-colored non-root nodes; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 1, 3, 5, 2, 0, 0, 1, 4, 12, 18, 3, 0, 0, 1, 5, 22, 64, 66, 6, 0, 0, 1, 6, 35, 156, 363, 266, 12, 0, 0, 1, 7, 51, 310, 1193, 2214, 1111, 25, 0, 0, 1, 8, 70, 542, 2980, 9748, 14043, 4792, 52, 0, 0, 1, 9, 92, 868, 6273, 30526, 82916, 91857, 21124, 113, 0
Offset: 0

Views

Author

Alois P. Heinz, Feb 24 2015

Keywords

Comments

From Vaclav Kotesovec, Feb 24 2015: (Start)
k Limit n->infinity A(n,k)^(1/n)
1 2.517540352632003890795354598463447277335981266803... = A246169
2 5.249032491228170579164952216184309265343086337648... = A246312
3 7.969494030514425004826375511986491746399264355846...
4 10.688492754969652458452048798468242930479212456958...
5 13.407087472537747579787047072702638639945914705837...
6 16.125529360448558670505097146631763969697822205298...
7 18.843901825822305757579605844910623225182677164912...
8 21.562238702430237066018783115405680041128676137631...
9 24.280555694806692616578932533497629224907619468796...
10 26.998860838916733933849490675388336975888308433826...
100 271.64425688361559470587959030374804709717287744789...
Conjecture: For big k the limit asymptotically approaches k*exp(1).
(End)

Examples

			A(3,2) = 5:
  o    o    o    o      o
  |    |    |    |     / \
  1    1    2    2    1   2
  |    |    |    |
  1    2    1    2
Square array A(n,k) begins:
  0,  0,   0,    0,    0,     0,     0, ...
  1,  1,   1,    1,    1,     1,     1, ...
  0,  1,   2,    3,    4,     5,     6, ...
  0,  1,   5,   12,   22,    35,    51, ...
  0,  2,  18,   64,  156,   310,   542, ...
  0,  3,  66,  363, 1193,  2980,  6273, ...
  0,  6, 266, 2214, 9748, 30526, 77262, ...
		

Crossrefs

Rows n=0-4 give: A000004, A000012, A001477, A000326, 2*A051662(k-1) for k>0.
Lower diagonal gives A255523.

Programs

  • Maple
    with(numtheory):
    A:= proc(n, k) option remember; `if`(n<2, n, add(A(n-j, k)*add(
          k*A(d, k)*d*(-1)^(j/d+1), d=divisors(j)), j=1..n-1)/(n-1))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    A[n_, k_] := A[n, k] = If[n<2, n, Sum[A[n-j, k]*Sum[k*A[d, k]*d*(-1)^(j/d + 1), {d, Divisors[j]}], {j, 1, n-1}]/(n-1)]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Feb 22 2016, after Alois P. Heinz *)

A242375 Number of rooted trees with n n-colored non-root nodes.

Original entry on oeis.org

1, 1, 7, 82, 1499, 37476, 1200705, 46990952, 2175619923, 116400215521, 7069820334023, 480722969498938, 36186340018129392, 2987845924408179654, 268530017303221572650, 26098422892000807053155, 2727654868575748827350403, 305075571192329680642519141
Offset: 0

Views

Author

Alois P. Heinz, May 12 2014

Keywords

Examples

			a(2) = 7:
  o    o    o    o      o        o        o
  |    |    |    |     / \      / \      / \
  1    1    2    2    1   1    1   2    2   2
  |    |    |    |
  1    2    1    2
		

Crossrefs

A diagonal of A242249.
Cf. A255523.

Programs

  • Maple
    with(numtheory):
    b:= proc(n, k) option remember; `if`(n<2, n, (add(add(d*
          b(d, k), d=divisors(j))*b(n-j, k)*k, j=1..n-1))/(n-1))
        end:
    a:= n-> b(n+1, n):
    seq(a(n), n=0..20);
  • Mathematica
    b[n_, k_] := b[n, k] = If[n < 2, n, (Sum[Sum[d*b[d, k], {d, Divisors[j]}] * b[n - j, k]*k, {j, 1, n - 1}])/(n - 1)];
    a[n_] := b[n + 1, n];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Mar 21 2017, translated from Maple *)

Formula

a(n) ~ c * exp(n) * n^(n-3/2), where c = exp(1 + exp(-2)/2) / sqrt(2*Pi) = 1.160358615244339554387715748... . - Vaclav Kotesovec, Aug 28 2014, updated Mar 18 2024
Showing 1-2 of 2 results.