A255562 A reversed prime Fibonacci sequence: a(n+2) is the smallest odd prime such that a(n) is the smallest odd prime divisor of a(n+1)+a(n+2).
3, 5, 7, 3, 11, 7, 37, 19, 277, 331, 223, 439, 7, 406507, 67, 330515394367, 967, 10576492618777, 116041, 223724392248491824062507397, 3691561, 100105207373914057144918297314160710207525630111509317, 423951181
Offset: 1
Keywords
Links
- J. F. Alm and T. Herald, A Note on Prime Fibonacci Sequences, Fibonacci Quarterly 54:1 (2016), pp. 55-58. arXiv:1507.04807 [math.NT], 2015.
Programs
-
PARI
lista(nn) = {print1(pp=3, ", "); print1(p=5, ", "); for (n=1, nn, forprime(q=3, , s = (p+q)/ 2^(valuation(p+q, 2)); if ((s!=1) && pp == factor(s)[1,1], np = q; break);); print1(np, ", "); pp = p; p = np;);} \\ Michel Marcus, Jul 11 2015
-
Python
import math def sieve(n): r = int(math.floor(math.sqrt(n))) composites = [j for i in range(2,r+1) for j in range(2*i, n, i)] primes = set(range(2,n)).difference(set(composites)) return sorted(primes) Primes = sieve(1000000) Odd_primes = Primes[1:] def find_smallest_odd_div(n): for p in Odd_primes: if n % p == 0: return p def next_term(a,b): for p in Odd_primes: if (p + b) % a == 0: if find_smallest_odd_div(p+b) == a: return p def compute_reversed_seq(a,b): seq = [a,b] while seq[-1] != None: seq.append(next_term(seq[-2],seq[-1])) return seq[:len(seq)-1] print(compute_reversed_seq(3,5))
-
Python
from sympy import isprime, factorint from itertools import islice def rem2(n): while n%2 == 0: n //= 2 return n def agen(): b, c = 3, 5 yield 3 while True: yield c k = (c+2)//b + 1 m = b*k while not isprime(m-c) or min(factorint(rem2(k)), default=b+1) < b: m += b k += 1 b, c = c, m-c print(list(islice(agen(), 19))) # Michael S. Branicky, Apr 12 2022
Extensions
a(16)-a(23) from Giovanni Resta, Jul 17 2015
Comments