A255586 Composite k such that Sum_{i=1..t-1} d(i+1)/d(i) is an integer, where d(1), ..., d(t) are the divisors of k in ascending order.
4, 8, 9, 16, 18, 25, 27, 32, 48, 49, 50, 64, 81, 98, 108, 121, 125, 128, 162, 169, 242, 243, 256, 289, 338, 343, 361, 375, 512, 529, 578, 625, 722, 729, 841, 961, 1024, 1029, 1058, 1250, 1331, 1369, 1458, 1681, 1682, 1849, 1920, 1922, 2048, 2187, 2197, 2209
Offset: 1
Keywords
Examples
18 is in the sequence because the divisors of 18 are {1, 2, 3, 6, 9, 18} and 2/1 + 3/2 + 6/3 + 9/6 + 18/9 = 9 is an integer.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
lst={};Do[s=0;Do[s=s+Divisors[n][[i+1]]/Divisors[n][[i]],{i,1,Length[Divisors[n]]-1}];If[IntegerQ[s]&&!PrimeQ[n],AppendTo[lst,n]],{n,2300}];lst Select[Range[2210],CompositeQ[#]&&IntegerQ[Total[#[[2]]/#[[1]]&/@Partition[ Divisors[ #],2,1]]]&] (* Harvey P. Dale, Jul 09 2019 *)
Comments