cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255602 Numbers k which are odd and squarefree and have the property that k is either a prime number or for every prime p dividing k, p+1 is not divisible by any of the other prime factors of k.

Original entry on oeis.org

1, 3, 5, 7, 11, 13, 17, 19, 21, 23, 29, 31, 35, 37, 39, 41, 43, 47, 53, 55, 57, 59, 61, 65, 67, 71, 73, 77, 79, 83, 85, 89, 93, 97, 101, 103, 107, 109, 111, 113, 115, 119, 127, 129, 131, 133, 137, 139, 143, 149, 151, 155
Offset: 1

Views

Author

Keywords

Comments

A proper subset of A056911 and a proper subset of A005117. Any divisor of a Lucas-Carmichael number is in this sequence. It is not known whether every number in this sequence divides at least one Lucas-Carmichael number. All prime numbers except 2 are present. Composite numbers in the sequence include 21, 35, 39, 55, 57, 65, 77, 85, 93, 111, 115, 119, 129, 133, 143, 155, 161, 183, 185, 187, ..., .

Examples

			15 is not in the sequence since its two prime factors are 3 and 5, and 5+1 is divisible by 3.
		

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Block[{fi = FactorInteger@ n}, ffi = First@# & /@ fi; Times @@ (Last@# & /@ fi) == 1 && Min@ Flatten@ Table[ Mod[1 + ffi, i], {i, ffi}] > 0]; fQ[1] = True; fQ[2] = False; Select[ Range@ 190, fQ]
  • PARI
    isok(n) = {if (! ((n % 2) && issquarefree(n)), return (0)); vpf = factor(n)[, 1]; for (i=1, #vpf, vpx = vpf[i]+1; for (j=1, #vpf, if (! (vpx % vpf[j]), return (0)); ); ); return (1); } \\ Michel Marcus, Mar 02 2015