cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A253598 a(n) = least Lucas-Carmichael number which is divisible by b(n), where {b(n)} (A255602) is the list of all numbers which could be a divisor of a Lucas-Carmichael number.

Original entry on oeis.org

399, 399, 935, 399, 935, 2015, 935, 399, 399, 4991, 51359, 2015, 8855, 1584599, 9486399, 20705, 5719, 18095, 2915, 935, 399, 46079, 162687, 2015, 22847, 46079, 16719263, 8855, 12719, 7055, 935, 80189, 189099039, 104663, 20705, 482143, 196559, 60059, 30073928079, 90287, 8855, 31535
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Jan 05 2015

Keywords

Comments

a(933) <= 266336887317945807999. - Daniel Suteu, Dec 01 2023

Examples

			a(12) = 8855 because this is the least Lucas-Carmichael number which is divisible by A255602(12) = 35.
		

Crossrefs

Programs

  • Mathematica
    LucasCarmichaelQ[n_] := Block[{fi = FactorInteger@ n}, ! PrimeQ@ n && Times @@ (Last@# & /@ fi) == 1 && Plus @@ Mod[n + 1, 1 + First@# & /@ fi] == 0]; LucasCarmichaelQ[1] = False; fQ[n_] := Block[{fi = FactorInteger@ n}, ffi = First@# & /@ fi; Times @@ (Last@# & /@ fi) == 1 && Min@ Flatten@ Table[Mod[1 + ffi, i], {i, ffi}] > 0]; fQ[1] = True; fQ[2] = False; lcdv = Select[ Range@ 3204, fQ]; f[n_] := Block[{k = lcdv[[n]]}, d = 2k; While[ !LucasCarmichaelQ@ k, k += d]; k]; Array[f, 95] (* Robert G. Wilson v, Feb 11 2015 *)

Extensions

a(96) from Charles R Greathouse IV, Feb 12 2015

A306695 a(n) = gcd(n, psi(n)).

Original entry on oeis.org

1, 1, 1, 2, 1, 6, 1, 4, 3, 2, 1, 12, 1, 2, 3, 8, 1, 18, 1, 4, 1, 2, 1, 24, 5, 2, 9, 4, 1, 6, 1, 16, 3, 2, 1, 36, 1, 2, 1, 8, 1, 6, 1, 4, 9, 2, 1, 48, 7, 10, 3, 4, 1, 54, 1, 8, 1, 2, 1, 12, 1, 2, 3, 32, 1, 6, 1, 4, 3, 2, 1, 72, 1, 2, 15, 4, 1, 6, 1, 16, 27, 2, 1, 12, 1, 2, 3, 8, 1, 18, 7, 4, 1, 2, 5, 96, 1, 14, 9, 20
Offset: 1

Views

Author

Torlach Rush, Mar 05 2019

Keywords

Comments

Here psi(n) is Dedekind's psi function A001615.
a(n) <= n <= A001615(n).
a(n) = n iff a(n) * 2 = A001615(n), n > 1.
a(n) = 1 iff either n=2 or n is in A255602. - Robert Israel, Mar 12 2019

Crossrefs

Programs

  • Maple
    f:= proc(n) local p; igcd(n, n*mul(1+1/p, p=numtheory:-factorset(n))) end proc:
    map(f, [$1..100]); # Robert Israel, Mar 11 2019
  • Mathematica
    psi[n_] := If[n == 1, 1, n Times @@ (1 + 1/FactorInteger[n][[All, 1]])];
    a[n_] := GCD[n, psi[n]];
    Array[a, 100] (* Jean-François Alcover, Jun 08 2020 *)
  • PARI
    dpsi(n) = n * sumdivmult(n, d, issquarefree(d)/d); \\ A001615
    a(n) = gcd(n, dpsi(n)); \\ Michel Marcus, Mar 05 2019

Formula

a(n) = gcd(n, A001615(n)).
Showing 1-2 of 2 results.