cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A332880 If n = Product (p_j^k_j) then a(n) = numerator of Product (1 + 1/p_j).

Original entry on oeis.org

1, 3, 4, 3, 6, 2, 8, 3, 4, 9, 12, 2, 14, 12, 8, 3, 18, 2, 20, 9, 32, 18, 24, 2, 6, 21, 4, 12, 30, 12, 32, 3, 16, 27, 48, 2, 38, 30, 56, 9, 42, 16, 44, 18, 8, 36, 48, 2, 8, 9, 24, 21, 54, 2, 72, 12, 80, 45, 60, 12, 62, 48, 32, 3, 84, 24, 68, 27, 32, 72
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 28 2020

Keywords

Comments

Numerator of sum of reciprocals of squarefree divisors of n.
(6/Pi^2) * A332881(n)/a(n) is the asymptotic density of numbers that are coprime to their digital sum in base n+1 (see A094387 and A339076 for bases 2 and 10). - Amiram Eldar, Nov 24 2022

Examples

			1, 3/2, 4/3, 3/2, 6/5, 2, 8/7, 3/2, 4/3, 9/5, 12/11, 2, 14/13, 12/7, 8/5, 3/2, 18/17, ...
		

Crossrefs

Programs

  • Maple
    a:= n-> numer(mul(1+1/i[1], i=ifactors(n)[2])):
    seq(a(n), n=1..80);  # Alois P. Heinz, Feb 28 2020
  • Mathematica
    Table[If[n == 1, 1, Times @@ (1 + 1/#[[1]] & /@ FactorInteger[n])], {n, 1, 70}] // Numerator
    Table[Sum[MoebiusMu[d]^2/d, {d, Divisors[n]}], {n, 1, 70}] // Numerator
  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
    A332880(n) = numerator(A001615(n)/n);

Formula

Numerators of coefficients in expansion of Sum_{k>=1} mu(k)^2*x^k/(k*(1 - x^k)).
a(n) = numerator of Sum_{d|n} mu(d)^2/d.
a(n) = numerator of psi(n)/n.
a(p) = p + 1, where p is prime.
a(n) = A001615(n) / A306695(n) = A001615(n) / gcd(n, A001615(n)). - Antti Karttunen, Nov 15 2021
From Amiram Eldar, Nov 24 2022: (Start)
Asymptotic means:
Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A332881(k) = 15/Pi^2 = 1.519817... (A082020).
Limit_{m->oo} (1/m) * Sum_{k=1..m} A332881(k)/a(k) = Product_{p prime} (1 - 1/(p*(p+1))) = 0.704442... (A065463). (End)

A332881 If n = Product (p_j^k_j) then a(n) = denominator of Product (1 + 1/p_j).

Original entry on oeis.org

1, 2, 3, 2, 5, 1, 7, 2, 3, 5, 11, 1, 13, 7, 5, 2, 17, 1, 19, 5, 21, 11, 23, 1, 5, 13, 3, 7, 29, 5, 31, 2, 11, 17, 35, 1, 37, 19, 39, 5, 41, 7, 43, 11, 5, 23, 47, 1, 7, 5, 17, 13, 53, 1, 55, 7, 57, 29, 59, 5, 61, 31, 21, 2, 65, 11, 67, 17, 23, 35
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 28 2020

Keywords

Comments

Denominator of sum of reciprocals of squarefree divisors of n.

Examples

			1, 3/2, 4/3, 3/2, 6/5, 2, 8/7, 3/2, 4/3, 9/5, 12/11, 2, 14/13, 12/7, 8/5, 3/2, 18/17, ...
		

Crossrefs

Cf. A001615, A008683, A017666, A048250, A007947, A109395, A187778 (positions of 1's), A306695, A308443, A308462, A332880 (numerators), A332883.

Programs

  • Maple
    a:= n-> denom(mul(1+1/i[1], i=ifactors(n)[2])):
    seq(a(n), n=1..80);  # Alois P. Heinz, Feb 28 2020
  • Mathematica
    Table[If[n == 1, 1, Times @@ (1 + 1/#[[1]] & /@ FactorInteger[n])], {n, 1, 70}] // Denominator
    Table[Sum[MoebiusMu[d]^2/d, {d, Divisors[n]}], {n, 1, 70}] // Denominator
  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
    A332881(n) = denominator(A001615(n)/n);

Formula

Denominators of coefficients in expansion of Sum_{k>=1} mu(k)^2*x^k/(k*(1 - x^k)).
a(n) = denominator of Sum_{d|n} mu(d)^2/d.
a(n) = denominator of psi(n)/n.
a(p) = p, where p is prime.
a(n) = n / A306695(n) = n / gcd(n, A001615(n)). - Antti Karttunen, Nov 15 2021

A327979 a(n) = gcd(n, A002322(n)), where A002322 is Carmichael lambda, also known as psi.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 1, 4, 1, 6, 1, 4, 3, 2, 1, 2, 5, 2, 9, 2, 1, 2, 1, 8, 1, 2, 1, 6, 1, 2, 3, 4, 1, 6, 1, 2, 3, 2, 1, 4, 7, 10, 1, 4, 1, 18, 5, 2, 3, 2, 1, 4, 1, 2, 3, 16, 1, 2, 1, 4, 1, 2, 1, 6, 1, 2, 5, 2, 1, 6, 1, 4, 27, 2, 1, 6, 1, 2, 1, 2, 1, 6, 1, 2, 3, 2, 1, 8, 1, 14, 3, 20, 1, 2, 1, 4, 3
Offset: 1

Views

Author

Antti Karttunen, Oct 04 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Array[GCD[#, CarmichaelLambda[#]] &, 100] (* Amiram Eldar, Oct 04 2019 *)
  • PARI
    A327979(n) = gcd(n, lcm(znstar(n)[2]));

Formula

a(n) = gcd(n, A002322(n)).

A306528 Numbers k such that gcd(k, phi(k)) = gcd(k, psi(k)).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 16, 17, 19, 20, 22, 23, 25, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 40, 41, 42, 43, 44, 46, 47, 49, 50, 52, 53, 56, 58, 59, 61, 62, 64, 65, 67, 68, 70, 71, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 88, 89, 92, 94, 97, 98, 100
Offset: 1

Views

Author

Torlach Rush, Feb 21 2019

Keywords

Comments

Here phi(n) is Euler's totient function A000010 and psi(n) is Dedekind's psi function A001615.
This sequence contains all prime powers p^k where phi(p^k) and psi(p^k) are equidistant from p^k, and gcd(p^k, phi(p^k)) = gcd(p^k, psi(p^k)) = p^(k - 1). For the prime numbers themselves this is trivial since phi(p) and psi(p) differ from p by 1 and 1^0 = 1.
If prime p|k, then p*k is in the sequence if and only if k is in the sequence. - Robert Israel, Mar 05 2019

Examples

			1 is a term because gcd(1, 1) = gcd(1, 1) = 1.
2 is a term because gcd(2, 1) = gcd(2, 3) = 1.
3 is a term because gcd(3, 2) = gcd(3, 4) = 1.
4 is a term because gcd(4, 2) = gcd(4, 6) = 2.
5 is a term because gcd(5, 4) = gcd(5, 6) = 1.
6 is not a term because gcd(6, 2) <> gcd(6, 12).
7 is a term because gcd(7, 6) = gcd(7, 8) = 1.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local p,F;
      F:= numtheory:-factorset(n);
      igcd(n, n*mul(1-1/p, p=F)) = igcd(n, n*mul(1+1/p,p=F))
    end proc:
    select(filter, [$1..200]); # Robert Israel, Mar 05 2019
  • PARI
    dpsi(n) = n * sumdivmult(n, d, issquarefree(d)/d); \\ A001615
    isok(k) = gcd(k, eulerphi(k)) == gcd(k, dpsi(k)); \\ Michel Marcus, Feb 27 2019

A306711 Numbers k such that gcd(k, phi(k)) <> gcd(k, psi(k)).

Original entry on oeis.org

6, 12, 15, 18, 21, 24, 30, 33, 36, 39, 45, 48, 51, 54, 55, 57, 60, 63, 66, 69, 72, 75, 87, 90, 91, 93, 95, 96, 99, 102, 108, 110, 111, 117, 120, 123, 129, 132, 135, 138, 141, 144, 145, 147, 150, 153, 155, 159, 162, 165, 171, 174, 177, 180, 182, 183, 189, 190, 192, 198, 201
Offset: 1

Views

Author

Torlach Rush, Mar 05 2019

Keywords

Comments

Numbers m such that A306695(m) = m are terms.

Examples

			6 is a term because gcd(6,2) <> gcd(6,12).
12 is a term because gcd(12,4) <> gcd(12, 24).
13 is not a term because gcd(13,12) = gcd(13, 14).
14 is not a term because gcd(14,6) = gcd(14, 24).
		

Crossrefs

Cf. A000010 (Euler totient function), A001615 (Dedekind psi function).
Complement of A306528.
Cf. A306695.

Programs

  • Maple
    psi:= k -> mul((t+1)/t, t=numtheory:-factorset(k))*k:
    select(t -> igcd(t, psi(t)) <> igcd(t, numtheory:-phi(t)), [$1..1000]); # Robert Israel, Apr 28 2019
  • PARI
    dpsi(n) = n * sumdivmult(n, d, issquarefree(d)/d); \\ A001615
    isok(k) = gcd(k, eulerphi(k)) != gcd(k, dpsi(k)); \\ Michel Marcus, Mar 21 2019
Showing 1-5 of 5 results.