A255609 a(1)=2; a(n) = the smallest prime p such that a(n)-a(n-1) is semiprime (A001358).
2, 11, 17, 23, 29, 43, 47, 53, 59, 73, 79, 83, 89, 103, 107, 113, 127, 131, 137, 151, 157, 163, 167, 173, 179, 193, 197, 211, 233, 239, 277, 281, 307, 311, 317, 331, 337, 347, 353, 359, 373, 379, 383, 389, 463, 467, 541, 547, 557, 563, 569, 607
Offset: 1
Keywords
Examples
a(2) - a(1) = 11 - 2 = 9 = 3*3; a(3) - a(2) = 17 - 11 = 6 = 2*3; a(81) - a(80) = 1009 - 887 = 122 = 2*61.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A:= Vector(100): A[1]:= 2: for n from 2 to 100 do p:= A[n-1]; do p:= nextprime(p); until numtheory:-bigomega(p-A[n-1]) = 2; A[n]:= p; od: convert(A,list); # Robert Israel, Dec 28 2022
-
Mathematica
s = {2}; p = 2; Do[q = NextPrime[p]; While[2 != PrimeOmega[q - p], q = NextPrime[q]]; AppendTo[s, q]; p = q, {100}]; s sp[n_]:=Module[{p=NextPrime[n]},While[PrimeOmega[p-n]!=2,p= NextPrime[ p]];p]; NestList[sp,2,60] (* Harvey P. Dale, Oct 10 2015 *)
-
PARI
v=[2];forprime(p=3,300,if(bigomega(p-v[#v])==2,v=concat(v,p)));v \\ Derek Orr, Feb 28 2015
Comments