cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255609 a(1)=2; a(n) = the smallest prime p such that a(n)-a(n-1) is semiprime (A001358).

Original entry on oeis.org

2, 11, 17, 23, 29, 43, 47, 53, 59, 73, 79, 83, 89, 103, 107, 113, 127, 131, 137, 151, 157, 163, 167, 173, 179, 193, 197, 211, 233, 239, 277, 281, 307, 311, 317, 331, 337, 347, 353, 359, 373, 379, 383, 389, 463, 467, 541, 547, 557, 563, 569, 607
Offset: 1

Views

Author

Zak Seidov, Feb 28 2015

Keywords

Comments

Sequence with any initial prime term a(1) eventually merges with this sequence: 3,7,11; 5,11; 13,17; 19,23; 31,37,41,47.
For n > 1, a(n) = A289750(n+1). - Jon E. Schoenfield, Nov 26 2017

Examples

			a(2) - a(1) = 11 - 2 = 9 = 3*3;
a(3) - a(2) = 17 - 11 = 6 = 2*3;
a(81) - a(80) = 1009 - 887 = 122 = 2*61.
		

Crossrefs

Programs

  • Maple
    A:= Vector(100): A[1]:= 2:
    for n from 2 to 100 do
      p:= A[n-1];
      do
        p:= nextprime(p);
        until numtheory:-bigomega(p-A[n-1]) = 2;
      A[n]:= p;
    od:
    convert(A,list); # Robert Israel, Dec 28 2022
  • Mathematica
    s = {2}; p = 2; Do[q = NextPrime[p]; While[2 != PrimeOmega[q - p], q = NextPrime[q]]; AppendTo[s, q]; p = q, {100}]; s
    sp[n_]:=Module[{p=NextPrime[n]},While[PrimeOmega[p-n]!=2,p= NextPrime[ p]];p]; NestList[sp,2,60] (* Harvey P. Dale, Oct 10 2015 *)
  • PARI
    v=[2];forprime(p=3,300,if(bigomega(p-v[#v])==2,v=concat(v,p)));v \\ Derek Orr, Feb 28 2015