cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255610 G.f.: Product_{k>=1} 1/(1-x^k)^(3*k).

Original entry on oeis.org

1, 3, 12, 37, 111, 303, 804, 2022, 4950, 11715, 27081, 61083, 135112, 293142, 625620, 1314267, 2722323, 5564172, 11234865, 22424904, 44284545, 86573147, 167648418, 321746907, 612274678, 1155782109, 2165116416, 4026391221, 7435806048, 13641093684, 24865920932
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 28 2015

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, 3*add(
          a(n-j)*numtheory[sigma][2](j), j=1..n)/n)
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Mar 11 2015
  • Mathematica
    nmax=50; CoefficientList[Series[Product[1/(1-x^k)^(3*k),{k,1,nmax}],{x,0,nmax}],x]

Formula

G.f.: Product_{k>=1} 1/(1-x^k)^(3*k).
a(n) ~ Zeta(3)^(1/4) * exp(1/4 + 2^(-2/3) * 3^(4/3) * Zeta(3)^(1/3) * n^(2/3)) / (A^3 * 6^(1/4) * sqrt(Pi) * n^(3/4)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant and Zeta(3) = A002117 = 1.202056903... . - Vaclav Kotesovec, Feb 28 2015
More precise asymptotics: a(n) ~ Zeta(3)^(1/4) * exp(1/4 + 2^(-2/3) * 3^(4/3) * Zeta(3)^(1/3) * n^(2/3)) / (A^3 * 6^(1/4) * sqrt(Pi) * n^(3/4)) * (1 - c/n^(2/3)), where c = 0.21774822... . - Vaclav Kotesovec, Oct 15 2015
G.f.: exp(3*Sum_{k>=1} x^k/(k*(1 - x^k)^2)). - Ilya Gutkovskiy, May 29 2018

Extensions

New name from Vaclav Kotesovec, Mar 12 2015