cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A228131 a(n) = Sum_{i=0..n-1} K(i,n)*i, where K(,) is Kronecker symbol.

Original entry on oeis.org

0, 1, -1, 4, 0, 6, -7, 0, 27, 6, -11, -8, 0, 20, -30, 64, 0, -4, -19, 0, 0, 46, -69, -48, 250, 106, -9, 0, 0, 68, -93, 0, 0, 44, -70, 216, 0, 82, -156, 0, 0, 60, -43, -88, 0, 148, -235, -32, 1029, 94, -102, 0, 0, 6, -220, -224, 0, -82, -177, 0, 0, 168, -126, 1024, 0, 304, -67, 0, 0, 268, -497, 0, 0, 494, -50, -152, 0, 276, -395, 0, 2187, 4, -249, 0, 0, 310, -522, -176, 0, 388, -182, 0, 0, 424, -760, -192, 0, 202, 0, 2000
Offset: 1

Views

Author

Max Alekseyev, Aug 11 2013

Keywords

Comments

For prime n==1 (mod 4), a(n) = 0.
For prime n==3 (mod 4) and n>3, i.e., n=A002145(m) for m>1, a(n) = -n*A002143(m).

Crossrefs

Programs

  • Mathematica
    Table[Sum[KroneckerSymbol[k, n]*k, {k, 0, n - 1}], {n, 0, 50}] (* G. C. Greubel, Apr 23 2018 *)
  • PARI
    a(n) = sum(i=1,n-1, kronecker(i,n)*i)

A373748 Triangle read by rows: T(n, k) is k if k is a quadratic residue modulo n, otherwise is -k and is a quadratic nonresidue modulo n. T(0, 0) = 0 by convention.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 0, 1, -2, 3, 0, 1, -2, -3, 4, 0, 1, -2, -3, 4, 5, 0, 1, -2, 3, 4, -5, 6, 0, 1, 2, -3, 4, -5, -6, 7, 0, 1, -2, -3, 4, -5, -6, -7, 8, 0, 1, -2, -3, 4, -5, -6, 7, -8, 9, 0, 1, -2, -3, 4, 5, 6, -7, -8, 9, 10, 0, 1, -2, 3, 4, 5, -6, -7, -8, 9, -10, 11, 0, 1, -2, -3, 4, -5, -6, -7, -8, 9, -10, -11, 12
Offset: 0

Views

Author

Peter Luschny, Jun 27 2024

Keywords

Examples

			Triangle starts:
  [0] [0]
  [1] [0,  1]
  [2] [0,  1,  2]
  [3] [0,  1, -2,  3]
  [4] [0,  1, -2, -3,  4]
  [5] [0,  1, -2, -3,  4,  5]
  [6] [0,  1, -2,  3,  4, -5,  6]
  [7] [0,  1,  2, -3,  4, -5, -6,  7]
  [8] [0,  1, -2, -3,  4, -5, -6, -7,  8]
  [9] [0,  1, -2, -3,  4, -5, -6,  7, -8,  9]
 [10] [0,  1, -2, -3,  4,  5,  6, -7, -8,  9,  10]
		

Crossrefs

Signed version of A002262.
Cf. A000004 (column 0), A001477 (main diagonal), A255644(n) + n (row sums).

Programs

  • Maple
    QR := (a, n) -> ifelse(n = 0, 1, NumberTheory:-QuadraticResidue(a, n)):
    for n from 0 to 10 do seq(a*QR(a, n), a = 0..n) od;
  • Mathematica
    qr[n_] := qr[n] = Join[Table[PowerMod[k, 2, n], {k, 0, Floor[n/2]}], {n}];
    T[0, 0] := 0; T[n_, k_] := If[MemberQ[qr[n], k], k, -k];
    Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten
  • SageMath
    def Trow(n):
        q = set(mod(a * a, n) for a in range(n // 2  + 1)).union({n})
        return [k if k in q else -k for k in range(n + 1)]
    for n in range(11): print(Trow(n))

A255643 Difference between sums of quadratic residues and non-residues modulo n that are coprime to n.

Original entry on oeis.org

0, 1, -1, -2, 0, -4, -7, -14, -3, 0, -11, -22, 0, 0, -50, -44, 0, -12, -19, -60, -84, -44, -69, -94, 0, 0, -9, -98, 0, -80, -93, -152, -176, 0, -280, -138, 0, -76, -312, -300, 0, -126, -43, -286, -330, 0, -235, -332, -49, 0, -476, -364, 0, -36, -660, -602, -570, 0, -177, -380, 0, 0, -630, -560, -780, -374, -67, -680, -782, -560, -497, -714, 0, 0, -850, -798, -1232, -468, -395, -1080, -27, 0, -249, -882, -1360, -172, -1508, -1430, 0, -600, -1820, -1058, -1674, 0, -2090, -1240, 0, 0, -1518, -1100
Offset: 1

Views

Author

Max Alekseyev, Mar 01 2015

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) local t;
      add(`if`(igcd(t,n)=1, t*numtheory:-quadres(t,n),0), t=1..n-1)
    end proc:
    map(f, [$1..100]); # Robert Israel, Feb 27 2025
  • PARI
    { A255643(n) = my(r); r=0; for(i=0,n-1, if(gcd(i,n)>1,next); if(issquare(Mod(i,n)), r+=i, r-=i) ); r }

Formula

For prime n, a(n) = A228131(n) = A255644(n).
For prime n==1 (mod 4), a(n) = 0.
For prime n==3 (mod 4) and n > 3, i.e., n=A002145(m) for m > 1, a(n) = -n*A002143(m).
Is 2 the only n for which a(n) > 0? - Robert Israel, Feb 27 2025
Showing 1-3 of 3 results.