cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255655 The sum of the odd terms in row n of A050873.

Original entry on oeis.org

1, 1, 5, 2, 9, 5, 13, 4, 21, 9, 21, 10, 25, 13, 45, 8, 33, 21, 37, 18, 65, 21, 45, 20, 65, 25, 81, 26, 57, 45, 61, 16, 105, 33, 117, 42, 73, 37, 125, 36, 81, 65, 85, 42, 189, 45, 93, 40, 133, 65, 165, 50, 105, 81, 189, 52, 185, 57, 117, 90
Offset: 1

Views

Author

Geoffrey Critzer, Mar 01 2015

Keywords

Examples

			a(10)=9 because row 10 of A050873 is gcd(10,k) for k=1,2,...10: 1, 2, 1, 2, 5, 2, 1, 2, 1, 10. If we sum the odd terms in this row we have 1+1+5+1+1=9.
		

Crossrefs

Programs

  • Mathematica
    nn = 60; f[list_, i_] := list[[i]]; a =Table[EulerPhi[n], {n, 1, nn}]; b =
    Table[If[OddQ[n], n, 0], {n, 1, nn}]; Table[DirichletConvolve[f[a, n], f[b, n], n, m], {m, 1, nn}]
    Table[Sum[(d*(1-(-1)^d)/2)*EulerPhi[n/d], {d, Divisors[n]}], {n, 1, 50}] (* Vaclav Kotesovec, Feb 02 2019 *)
    f[p_, e_] := p^(e-1) * If[p == 2, 1, (p-1)*e + p]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Apr 30 2023 *)
  • PARI
    a(n) = sum(k=1, n, my(g = gcd(n, k)); if (g % 2, g, 0)); \\ Michel Marcus, Feb 05 2018

Formula

For odd n, a(n) = A018804(n).
Dirichlet g.f.: zeta(s-1)^2*(1 - 2^(1-s))/zeta(s).
a(n) = Sum_{d|n} A193356(d)*A000010(n/d). - Werner Schulte, Feb 04 2018
Multiplicative with a(2^e)=2^(e-1) for e>0 and a(p^e)=((p-1)*e+p)*p^(e-1) for e>0 and p>2. - Werner Schulte, Feb 04 2018
Sum_{k=1..n} a(k) ~ 3*n^2 / (2*Pi^2) * (log(n) - 1/2 + 2*gamma + log(2) - 6*Zeta'(2)/Pi^2), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Feb 02 2019