A162795
Total number of toothpicks in the toothpick structure A139250 that are parallel to the initial toothpick, after n odd rounds.
Original entry on oeis.org
1, 5, 9, 21, 25, 37, 53, 85, 89, 101, 117, 149, 165, 201, 261, 341, 345, 357, 373, 405, 421, 457, 517, 597, 613, 649, 709, 793, 853, 965, 1173, 1365, 1369, 1381, 1397, 1429, 1445, 1481, 1541, 1621, 1637, 1673, 1733, 1817, 1877, 1989, 2197, 2389, 2405, 2441, 2501
Offset: 1
From _Omar E. Pol_, Feb 18 2015: (Start)
Written as an irregular triangle T(j,k), k>=1, in which the row lengths are the terms of A011782:
1;
5;
9, 21;
25, 37, 53, 85;
89,101,117,149,165,201,261,341;
345,357,373,405,421,457,517,597,613,649,709,793,853,965,1173,1365;
...
The right border gives the positive terms of A002450.
(End)
It appears that T(j,k) = A147562(j,k) = A169707(j,k), if k is a power of 2, for example: it appears that the three mentioned triangles only share the elements of the columns 1, 2, 4, 8, 16, ... - _Omar E. Pol_, Feb 20 2015
Cf.
A002450,
A048645,
A139250,
A139251,
A147562,
A153000,
A159791,
A159792,
A160164,
A160552,
A162793,
A162794,
A162796,
A162797,
A169707,
A255263,
A255264,
A255747.
Original entry on oeis.org
0, 1, 2, 5, 6, 9, 14, 21, 22, 25, 30, 37, 42, 53, 70, 85, 86, 89, 94, 101, 106, 117, 134, 149, 154, 165, 182, 205, 234, 269, 310, 341, 342, 345, 350, 357, 362, 373, 390, 405, 410, 421, 438, 461, 490, 525, 566, 597, 602, 613, 630, 653, 682, 717, 758, 805, 858, 917, 982, 1053, 1130, 1213, 1302, 1365
Offset: 0
Also, written as an irregular triangle in which the row lengths are the terms of A011782, the sequence begins:
0,
1,
2, 5,
6, 9, 14, 21,
22, 25, 30, 37, 42, 53, 70, 85;
86, 89, 94, 101, 106, 117, 134, 149, 154, 165, 182, 205, 234, 269,310,341;
...
It appears that the first column gives 0 together with the terms of A047849, hence the right border gives A002450.
It appears that this triangle at least shares with the triangles from the following sequences; A151920, A255737, A255747, A256249, the positive elements of the columns k, if k is a power of 2.
From _Omar E. Pol, Jan 02 2016: (Start)
Illustration of initial terms in the fourth quadrant of the square grid:
---------------------------------------------------------------------------
n a(n) Compact diagram
---------------------------------------------------------------------------
0 0 _
1 1 |_|_ _
2 2 |_| |
3 5 |_ _|_ _ _ _
4 6 |_| | | |
5 9 |_ _| | |
6 14 |_ _ _| |
7 21 |_ _ _ _|_ _ _ _ _ _ _ _
8 22 |_| | | |_ _ | |
9 25 |_ _| | |_ | | |
10 30 |_ _ _| | | | | |
11 37 |_ _ _ _| | | | |
12 42 | | |_ _ _| | | |
13 53 | |_ _ _ _ _| | |
14 70 |_ _ _ _ _ _ _| |
15 85 |_ _ _ _ _ _ _ _|_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
16 86 |_| | | |_ _ | |_ _ _ _ _ _ | |
17 89 |_ _| | |_ | | |_ _ _ _ _ | | |
18 94 |_ _ _| | | | | |_ _ _ _ | | | |
19 101 |_ _ _ _| | | | |_ _ _ | | | | |
20 106 | | |_ _ _| | | |_ _ | | | | | |
21 117 | |_ _ _ _ _| | |_ | | | | | | |
22 134 |_ _ _ _ _ _ _| | | | | | | | | |
23 149 |_ _ _ _ _ _ _ _| | | | | | | | |
24 154 | | | | | | |_ _ _| | | | | | | |
25 165 | | | | | |_ _ _ _ _| | | | | | |
26 182 | | | | |_ _ _ _ _ _ _| | | | | |
27 205 | | | |_ _ _ _ _ _ _ _ _| | | | |
28 234 | | |_ _ _ _ _ _ _ _ _ _ _| | | |
29 269 | |_ _ _ _ _ _ _ _ _ _ _ _ _| | |
30 310 |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
31 341 |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
.
a(n) is also the total number of cells in the first n regions of the diagram. A256263(n) gives the number of cells in the n-th region of the diagram.
(End)
Cf.
A002450,
A011782,
A047849,
A139250,
A151920,
A255737,
A255747,
A256249,
A256258,
A256260,
A256261,
A256263,
A256265.
-
Accumulate@Flatten@Join[{0}, NestList[Join[#, Range[Length[#] - 1]*6 - 1, {2 #[[-1]] + 1}] &, {1}, 5]] (* Ivan Neretin, Feb 14 2017 *)
A256249
Partial sums of A006257 (Josephus problem).
Original entry on oeis.org
0, 1, 2, 5, 6, 9, 14, 21, 22, 25, 30, 37, 46, 57, 70, 85, 86, 89, 94, 101, 110, 121, 134, 149, 166, 185, 206, 229, 254, 281, 310, 341, 342, 345, 350, 357, 366, 377, 390, 405, 422, 441, 462, 485, 510, 537, 566, 597, 630, 665, 702, 741, 782, 825, 870, 917, 966, 1017, 1070, 1125, 1182, 1241, 1302, 1365, 1366, 1369, 1374
Offset: 0
Written as an irregular triangle T(n,k), k >= 1, in which the row lengths are the terms of A011782 the sequence begins:
0;
1;
2, 5;
6, 9, 14, 21;
22, 25, 30, 37, 46, 57, 70, 85;
86, 89, 94,101,110,121,134,149,166,185,206,229,254,281,310,341;
...
Right border, a(2^m-1), gives A002450(m) for m >= 0.
a(2^m-2) = A203241(m) for m >= 2.
It appears that this triangle at least shares with the triangles from the following sequences; A151920, A255737, A255747, the positive elements of the columns k, if k is a power of 2.
From _Omar E. Pol_, Jan 03 2016: (Start)
Illustration of initial terms in the fourth quadrant of the square grid:
---------------------------------------------------------------------------
n a(n) Compact diagram
---------------------------------------------------------------------------
0 0 _
1 1 |_|_ _
2 2 |_| |
3 5 |_ _|_ _ _ _
4 6 |_| | | |
5 9 |_ _| | |
6 14 |_ _ _| |
7 21 |_ _ _ _|_ _ _ _ _ _ _ _
8 22 |_| | | | | | | |
9 25 |_ _| | | | | | |
10 30 |_ _ _| | | | | |
11 37 |_ _ _ _| | | | |
12 46 |_ _ _ _ _| | | |
13 57 |_ _ _ _ _ _| | |
14 70 |_ _ _ _ _ _ _| |
15 85 |_ _ _ _ _ _ _ _|
.
a(n) is also the total number of cells in the first n regions of the diagram. A006257(n) gives the number of cells in the n-th region of the diagram.
(End)
- David A. Corneth, Table of n, a(n) for n = 0..9999
- Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, pp. 37, 41.
- Yuri Nikolayevsky and Ioannis Tsartsaflis, Cohomology of N-graded Lie algebras of maximal class over Z_2, arXiv:1512.87676 [math.RA], (2016), page 6.
- N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
- Index entries for sequences related to cellular automata
- Index entries for sequences related to the Josephus Problem
Cf.
A002450,
A006257,
A011782,
A139250,
A151920,
A169779,
A255737,
A255747,
A256250,
A256251,
A266540.
Showing 1-3 of 3 results.
Comments