A255739 Indices of nontrivial zeros of Riemann zeta function whose imaginary part sets a record for the absolute minimal difference from an integer.
1, 2, 3, 9, 51, 473, 3233, 7657, 7722, 20002, 124170, 126137, 977155
Offset: 1
Examples
------------------------------------------------------------------- Absolute New k Im(rho_k) A002410(k) difference record n a(n) ------------------------------------------------------------------- 1 14.134725142 > 14 0.134725142 Yes 1 1 2 21.022039639 > 21 0.022039639 Yes 2 2 3 25.010857580 > 25 0.010857580 Yes 3 3 4 30.424876126 > 30 0.424876126 Not 5 32.935061588 < 33 0.064938412 Not 6 37.586178159 < 38 0.413821841 Not 7 40.918719012 < 41 0.081280988 Not 8 43.327073281 > 43 0.327073281 Not 9 48.005150881 > 48 0.005150881 Yes 4 9 10 49.773832478 < 50 0.226167522 Not ... where rho_k is the k-th nontrivial zero of Riemann zeta function. We computed more digits of Im(rho_k), but in the above table only 9 digits beyond the decimal point appear.
Links
- Andrew M. Odlyzko, Tables of zeros of the Riemann zeta function.
- Andrew M. Odlyzko, On the distribution of spacings between zeros of the zeta function.
- Index entries for zeta function.
Programs
-
Mathematica
mn = Infinity; k = 1; lst = {}; While[k < 2501, a = N[ Abs[ Im[ ZetaZero[ k]] - Round[ Im[ ZetaZero[ k]] ]], 32]; If[a < mn, AppendTo[lst, k]; Print[k]; mn = a]; k++]; lst (* Robert G. Wilson v, Sep 29 2015 *)
Extensions
a(6)-a(10) from Robert G. Wilson v, Sep 29 2015
a(11)-a(12) from Robert G. Wilson v, Sep 30 2015
a(13) using Odlyzko's tables added by Amiram Eldar, Aug 10 2023
Comments