A255740 Square array read by antidiagonals upwards: T(n,1) = 1; for k > 1, T(n,k) = (n-1)*(n-2)^(A000120(k-1)-1) with n >= 1.
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 2, 0, 0, 1, 4, 3, 2, 1, 0, 1, 5, 4, 6, 2, 0, 0, 1, 6, 5, 12, 3, 2, 0, 0, 1, 7, 6, 20, 4, 6, 2, 0, 0, 1, 8, 7, 30, 5, 12, 6, 2, 1, 0, 1, 9, 8, 42, 6, 20, 12, 12, 2, 0, 0, 1, 10, 9, 56, 7, 30, 20, 36, 3, 2, 0, 0, 1, 11, 10, 72, 8, 42, 30, 80, 4, 6, 2, 0, 0, 1, 12, 11, 90, 9, 56, 42, 150, 5, 12, 6, 2, 0, 0
Offset: 1
Examples
The corner of the square array with the first 16 terms of the first 12 rows looks like this: ------------------------------------------------------------------------- A000007: 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 A255738: 1, 1, 1, 0, 1, 0, 0, 0 1, 0, 0, 0, 0, 0, 0, 0 A040000: 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 A151787: 1, 3, 3, 6, 3, 6, 6, 12, 3, 6, 6, 12, 6, 12, 12, 24 A147582: 1, 4, 4, 12, 4, 12, 12, 36, 4, 12, 12, 36, 12, 36, 36, 108 A151789: 1, 5, 5, 20, 5, 20, 20, 80, 5, 20, 20, 80, 20, 80, 80, 320 A151779: 1, 6, 6, 30, 6, 30, 30, 150, 6, 30, 30, 150, 30, 150, 150, 750 A151791: 1, 7, 7, 42, 7, 42, 42, 252, 7, 42, 42, 252, 42, 252, 252, 1512 A151782: 1, 8, 8, 56, 8, 56, 56, 392, 8, 56, 56, 392, 56, 392, 392, 2744 A255743: 1, 9, 9, 72, 9, 72, 72, 576, 9, 72, 72, 576, 72, 576, 576, 4608 A255744: 1,10,10, 90,10, 90, 90, 810,10, 90, 90, 810, 90, 810, 810, 7290 A255745: 1,11,11,110,11,110,110,1100,11,110,110,1100,110,1100,1100,11000 ...
Crossrefs
Programs
-
PARI
tabl(nn) = {for (n=1, nn, for (k=1, nn, if (k==1, x = 1, x= (n-1)*(n-2)^(hammingweight(k-1)-1)); print1(x, ", ");); print(););} \\ Michel Marcus, Mar 15 2015
Formula
T(n,1) = 1; for k > 1, T(n,k) = (n-1)*(n-2)^(A000120(k-1)-1) with n >= 1.
Comments