A255765 Partial sums of A255744.
1, 11, 21, 111, 121, 211, 301, 1111, 1121, 1211, 1301, 2111, 2201, 3011, 3821, 11111, 11121, 11211, 11301, 12111, 12201, 13011, 13821, 21111, 21201, 22011, 22821, 30111, 30921, 38211, 45501, 111111, 111121, 111211, 111301, 112111, 112201, 113011, 113821, 121111
Offset: 1
Keywords
Links
- Felix Fröhlich, Table of n, a(n) for n = 1..10000
- Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, p. 33.
Crossrefs
Programs
-
Mathematica
Accumulate@ MapAt[Floor, Array[10*9^(DigitCount[# - 1, 2, 1] - 1) &, 40], 1] (* Michael De Vlieger, Nov 03 2022 *)
-
PARI
lista(nn) = {s = 1; for (n=2, nn, print1(s, ", "); s += 10*9^(hammingweight(n-1)-1););} \\ Michel Marcus, Mar 15 2015
-
PARI
a(n) = sum(k=1, n, if (k==1, 1, 10*9^(hammingweight(k-1)-1))); \\ Michel Marcus, Mar 15 2015
Formula
Question: a(2^k) = A002275(k+1), k >= 0. Is this true?
Extensions
More terms from Michel Marcus, Mar 15 2015
Comments