A255767 Triangle read by rows: T(n,k) = sum of all parts of all partitions of n into k distinct parts.
1, 4, 6, 3, 12, 8, 10, 25, 24, 36, 6, 14, 77, 14, 32, 104, 40, 27, 153, 90, 40, 220, 150, 10, 22, 297, 275, 22, 72, 348, 444, 60, 26, 481, 676, 130, 56, 616, 938, 280, 60, 660, 1455, 450, 15, 80, 880, 1872, 832, 32, 34, 1003, 2618, 1309, 85, 108, 1224, 3312, 2106, 180, 38, 1349, 4465, 3078, 380, 120, 1620, 5540, 4540, 720
Offset: 1
Examples
Triangle begins: 1; 4; 6, 3; 12, 8; 10, 25; 24, 36, 6; 14, 77, 14; 32, 104, 40; 27, 153, 90; 40, 220, 150, 10; 22, 297, 275, 22; 72, 348, 444, 60; 26, 481, 676, 130; 56, 616, 938, 280; 60, 660, 1455, 450, 15; 80, 880, 1872, 832, 32; 34, 1003, 2618, 1309, 85; 108, 1224, 3312, 2106, 180; 38, 1349, 4465, 3078, 380; ...
Links
- Alois P. Heinz, Rows n = 1..500, flattened
Programs
-
Maple
A255767 := proc(n,k) n*A116608(n,k) ; end proc: for n from 1 to 20 do for k from 1 to A003056(n) do printf("%d,",A255767(n,k)) ; end do: printf("\n") ; end do: # R. J. Mathar, Jul 10 2015 # second Maple program: b:= proc(n, i) option remember; local j; if n=0 then 1 elif i<1 then 0 else []; for j from 0 to n/i do zip((x, y) ->x+y, %, [`if`(j>0, 0, [][]), b(n-i*j, i-1)], 0) od; %[] fi end: T:= n-> subsop(1=NULL, n*[b(n, n)])[]: seq(T(n), n=1..30); # Alois P. Heinz, Jul 26 2015
-
Mathematica
nmax = 30; T = Rest[CoefficientList[#, t]]& /@ Rest[CoefficientList[-1 + Product[1 + t x^j/(1 - x^j), {j, 1, nmax}] + O[x]^(nmax+1), x]]; Table[n*T[[n]], {n, 1, nmax}] // Flatten (* Jean-François Alcover, May 19 2018 *)
Formula
T(n,k) = n * A116608(n,k).
Extensions
a(7) and beyond from R. J. Mathar, Jul 10 2015
Comments