cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255803 G.f.: Product_{k>=1} 1/(1-x^k)^(3*k+2).

Original entry on oeis.org

1, 5, 23, 86, 295, 926, 2748, 7732, 20891, 54401, 137355, 337249, 808043, 1893402, 4348634, 9805669, 21741925, 47463473, 102133056, 216841459, 454648373, 942113618, 1930779697, 3915946921, 7864385266, 15647363323, 30858285440, 60345383394, 117065924679
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 07 2015

Keywords

Comments

In general, if g.f. = Product_{k>=1} 1/(1-x^k)^(m*k+c), m > 0, then a(n) ~ (m*Zeta(3))^(m/36 + c/6 + 1/6) * exp(m/12 - c^2 * Pi^4 / (432*m*Zeta(3)) + c * Pi^2 * n^(1/3) / (3 * 2^(4/3) * (m*Zeta(3))^(1/3)) + 3 * (m*Zeta(3))^(1/3) * n^(2/3) / 2^(2/3)) / (A^m * 2^(c/3 + 1/3 - m/36) * 3^(1/2) * Pi^((c+1)/2) * n^(m/36 + c/6 + 2/3)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Mar 08 2015

Crossrefs

Cf. A000219 (k), A005380 (k+1), A052847 (k-1), A120844 (2k+1), A253289 (2k-1), A255802 (2k+3), A255271 (3k+1).

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d, j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:=etr(n-> 3*n+2): seq(a(n), n=0..50); # after Alois P. Heinz
    with(numtheory):
    series(exp(add((3*sigma[2](k) + 2*sigma[1](k))*x^k/k, k = 1..30)), x, 31):
    seq(coeftayl(%, x = 0, n), n = 0..30); # Peter Bala, Jan 16 2025
  • Mathematica
    nmax=50; CoefficientList[Series[Product[1/(1-x^k)^(3*k+2),{k,1,nmax}],{x,0,nmax}],x]

Formula

a(n) ~ Zeta(3)^(7/12) * 3^(1/12) * exp(1/4 - Pi^4/(324*Zeta(3)) + Pi^2 * n^(1/3) / (3^(4/3) * (2*Zeta(3))^(1/3)) + 3^(4/3) * Zeta(3)^(1/3) * n^(2/3) / 2^(2/3)) / (A^3 * 2^(11/12) * Pi^(3/2) * n^(13/12)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant and Zeta(3) = A002117 = 1.202056903... .
G.f.: exp(Sum_{k >= 1} (3*sigma_2(k) + 2*sigma_1(k))*x^k/k) = 1 + 5*x + 23*x^2 + 86*x^3 + 295*x^4 + .... - Peter Bala, Jan 16 2025