A255819 E.g.f.: exp(Sum_{k>=1} k^3 * x^k).
1, 1, 17, 211, 3049, 54221, 1131601, 26714647, 700868561, 20208794329, 634445325361, 21512122643771, 782497124407417, 30364699568650981, 1251108918727992689, 54512805637285532671, 2502891521610396838561, 120718449425308259052977, 6099522639316776103853521
Offset: 0
Links
Programs
-
Mathematica
nmax=20; CoefficientList[Series[Exp[Sum[k^3*x^k,{k,1,nmax}]],{x,0,nmax}],x] * Range[0,nmax]! nn = 20; Range[0, nn]! * CoefficientList[Series[Product[Exp[k^3*x^k], {k, 1, nn}], {x, 0, nn}], x] (* Vaclav Kotesovec, Mar 21 2016 *)
Formula
E.g.f.: exp(x*(1 + 4*x + x^2)/(1-x)^4).
a(n) ~ 2^(3/10) * 3^(1/10) * 5^(-1/2) * n^(n-1/10) * exp(1/120 + 5 * 2^(-7/5) * 3^(1/5) * n^(4/5) - n).
a(n) = y(n)*n! where y(0)=1 and y(n)=(Sum_{k=0..n-1} (n-k)^4*y(k))/n for n>=1. - Benedict W. J. Irwin, Jun 02 2016
E.g.f.: Product_{k>=1} 1/(1 - x^k)^(J_4(k)/k), where J_4(k) is the Jordan function (A059377). - Ilya Gutkovskiy, May 25 2019
Comments