cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255860 Least m > 0 such that gcd(m^n+10, (m+1)^n+10) > 1, or 0 if there is no such m.

Original entry on oeis.org

1, 0, 20, 3, 2, 3, 320, 874, 6, 33, 1, 124, 465, 23433448460229, 81920, 3, 2, 82, 65, 2101, 1, 3, 3, 2398892314, 7270, 3, 11, 21, 2, 97546469, 1, 765170730, 6, 15, 3, 3, 23, 370460325141871548, 29206018, 3, 1
Offset: 0

Views

Author

M. F. Hasler, Mar 08 2015

Keywords

Comments

See A118119, which is the main entry for this class of sequences.

Examples

			For n=0, gcd(m^0+10, (m+1)^0+10) = gcd(11, 11) = 11 for any m > 0, therefore a(0)=1 is the smallest possible positive value.
For n=1, gcd(m^n+10, (m+1)^n+10) = gcd(m+10, m+11) = 1, therefore a(1)=0.
For n=2, we have gcd(20^2+10, 21^2+10) = gcd(410, 451) = 41, and the pair (m,m+1)=(20,21) is the smallest which yields a GCD > 1, therefore a(2)=20.
		

Crossrefs

Programs

  • Mathematica
    A255860[n_] := Module[{m = 1}, While[GCD[m^n + 10, (m + 1)^n + 10] <= 1, m++]; m]; Join[{1, 0}, Table[A255860[n], {n, 2, 12}]] (* Robert Price, Oct 16 2018 *)
  • PARI
    a(n,c=10,L=10^7,S=1)={n!=1&&for(a=S,L,gcd(a^n+c,(a+1)^n+c)>1&&return(a))}

Extensions

a(13)-a(36) from Hiroaki Yamanouchi, Mar 13 2015
a(37)-a(40) from Max Alekseyev, Aug 06 2015