A255867 Least m > 0 such that gcd(m^n+17, (m+1)^n+17) > 1, or 0 if there is no such m.
1, 0, 1, 1925, 1, 189812175, 1, 2, 1, 116, 1, 55508752881180794569675021, 1, 337276, 1, 230, 1, 162, 1, 2628, 1, 15, 1, 3604979675443168377172749, 1, 53, 1, 248, 1, 254, 1, 5998484614, 1, 1323, 1, 2, 1, 42750021, 1, 51, 1, 17870, 1, 108, 1, 87, 1, 8274, 1, 2, 1, 35, 1, 4049, 1, 308, 1, 8885, 1, 2805086, 1
Offset: 0
Examples
For n=0, gcd(m^0+17, (m+1)^0+17) = gcd(18, 18) = 18, therefore a(0)=1, the smallest possible (positive) m-value. For n=1, gcd(m^n+17, (m+1)^n+17) = gcd(m+17, m+18) = 1, therefore a(1)=0. For n=2, see formula with k=0. For n=3, gcd(1925^3+17, 1926^3+17) = 1951 and (m, m+1) = (1925, 1926) is the smallest pair which yields a GCD > 1 here.
Programs
-
Maple
f:= proc(n) local q1, q2, r, m, bestm,p,A; q1:= m^n + 17; q2:= (m+1)^n + 17; r:= resultant(q1,q2, m); bestm:= infinity; for p in numtheory:-factorset(r) do A:= [msolve(q1, p)]; A:= select(s -> eval(q2, s) mod p = 0, A); bestm:= min(bestm, op(map(s -> subs(s,m), A))); od; if bestm = infinity then -1 else bestm fi end proc: f(0):= 1: f(1):=0: map(f, [$1..26]); # Robert Israel, May 31 2019
-
Mathematica
A255867[n_] := Module[{m = 1}, While[GCD[m^n + 17, (m + 1)^n + 17] <= 1, m++]; m]; Join[{1, 0}, Table[A255867[n], {n, 2, 10}]] (* Robert Price, Oct 16 2018 *)
-
PARI
a(n,c=17,L=10^7,S=1)={n!=1 && for(a=S,L,gcd(a^n+c,(a+1)^n+c)>1 && return(a))}
-
Python
from sympy import primefactors, resultant, nthroot_mod from sympy.abc import m def A255867(n): if n == 0: return 1 k = 0 for p in primefactors(resultant(m**n+17,(m+1)**n+17)): for d in (a for a in nthroot_mod(-17,n,p,all_roots=True) if pow(a+1,n,p)==-17%p): k = min(d,k) if k else d return k # Chai Wah Wu, May 07 2024
Formula
a(2k) = 1 for k>=0, because gcd(1^(2k)+17, 2^(2k)+17) = gcd(18, 4^k-1) >= 3 since 4 = 1 (mod 3).
Extensions
a(5)-a(22) from Hiroaki Yamanouchi, Mar 12 2015
a(23)-a(60) from Max Alekseyev, Aug 06 2015
Comments